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0.1 Preface: Preliminaries

To do well in this class, it is expected that in addition to good programming skills, you are also competent in basic
high school and undergraduate mathematics, including

• Scientific notation

• Significant digits/figures; can you perform arithmetic keeping a fixed number of significant digits? It is
critically important to know this, as it is fundamental to understanding how computers do floating point
arithmetic. Understanding the limitations of this arithmetic is a central skill in this class.

• Basic algebra: Solving nonlinear equations & inequalities involving Logarithms, Exponentials, and Quadratics.

• Calculus I: Differentiation using Chain Rule, Product Rule. Basic exposure to Taylor Series, series conver-
gence, radius of convergence.

• Calculus II: Integration by variable substitution, Integration by parts

• Linear Algebra: Computing determinants, Properties of determinants, Computing Eigenvalues/Eigenvectors

• Calculus IV/Ordinary Differential Equations (ODEs): Basic solution strategies: method of separation, etc.
Exposure to Even/Odd functions, Fourier series, etc.

In terms of coding abilities, on coding assignments you will be expected to design, write, and debug codes that
are roughly 200 lines long. It is important that you start on coding assignments immediately after receiving the
homework, or bugs may prevent you from completing the assignment on time.

If you consider yourself a bit “rusty” on any of these or any other topics covered in this course, I have prepared
a “Suggested/Additional Online Reading List”, which is linked to on the Course home page.

Now hand out the Skills Assessment. Give students 20 minutes to complete.
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MATH 521, Fall 2018 Notes

Prof. Zachariah B. Etienne

Chapter 1: Introduction: Benefits and Pitfalls to Solving

Mathematical Problems on the Computer

Computers are remarkable machines, capable of performing billions (i.e., of order 109) mathematical operations
each second. So when we are faced with a mathematical problem—particularly a very challenging one—a computer
may often be the most efficient or only means to solve it.

The central focus of this class is to provide a graduate-level introduction to the basic strategies used to solve a
variety of mathematical problems on the computer. We call these strategies algorithms. It is assumed that you
already know how to program computers, and this skill will be necessary to “code up” (i.e., program a computer to
perform) these algorithms, which will be a major component to homework assignments. If you cannot understand
how an algorithm works, you will quickly find yourself confused when the computer outputs the wrong result.

There is no “perfect algorithm” for solving mathematical problems. Instead, there are a multitude of algorithms
for solving any general problem. Even an algorithm designed for a particular problem will have shortcomings. It
is therefore essential that we understand how these algorithms work, which requires a strong foundation in un-
dergraduate mathematics, including algebra, trigonometry, scientific notation, matrix algebra, differentiation,
Taylor Series, Fourier Series, and integration. The strongest indicator of your final grade in this class will not be
your ability to program computers (though this is a critical skill), but instead your proficiency in undergraduate
mathematics.

Since computer algorithms we program can and will give the incorrect solution, someone who is skilled in solving
mathematical problems on the computer must be equally skilled in understanding sources of error.

Continued on next page
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1.1 The Four Horsemen of the Error-pocalypse

We classify errors into four categories when solving mathematical problems on the computer.

1. Roundoff Error: Computers have limited facilities for storing numbers, so to maximize efficiency, we usually
represent numbers approximately in scientific notation with a fixed number of significant digits. As we will
see in Chapter 3, error caused by storing only a fixed number of significant digits—i.e., roundoff error—can
poison our numerical solution. We must therefore be able to determine how and where our algorithms lose
precision.

2. Undersampling Error / Insufficient Resources: When solving mathematical problems on the computer, it
is often essential that we first understand the scale of the solution—usually by computing a “back of the
envelope” or “order of magnitude” estimate of the solution (Chapter 4). Without such an estimate, the
algorithms we use may undersample the solution and yield the wrong answer, or we may find only after
wasting a large amount of time writing a computer program that the required computing power to solve a
mathematical problem far exceeds our available resources.
Indeed, modern computers are wonders of technology, but for certain problems, they are simply not powerful
enough. To determine the amount of computational resources needed to solve a problem on the computer, we
can combine a back-of-the-envelope estimate of the solution with the computational complexity (cost) of the
underlying algorithm itself (Chapter 5). If the needed resources exceeds our budget, we may need to choose
or develop more efficient algorithms, optimize existing algorithms, or move to more powerful computational
resources.

3. Truncation / Approximation Errors: Understanding the limitations and approximations made by our algo-
rithms is critically important. Sometimes for example, our solution might depend on an infinite Taylor series.
We cannot typically compute or store an infinite number of terms in this series, so we instead sum the series
up to a finite term, ignoring all remaining terms. The error imposed by ignoring remaining terms in this way
is called truncation error.

4. Human Error: Suppose we solve a mathematical problem on the computer based on some combination of
algorithms taught in this class, and this problem is impossible to solve without a computer. How can we be
confident that our solution is correct? To this end, we must always work to hone our skills in code validation—
the process by which we eliminate human errors both in choice of algorithms and bug-free implementation of
the algorithms—and gain confidence that the algorithms we have coded both work correctly and yield reliable
solutions. To this end, every coding assignment will contain at least some component of code validation.
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MATH 521, Fall 2018 Notes

Prof. Zachariah B. Etienne

Chapter 2: Scientific Notation, Significant Digits,

and Relative Error

2.1 Scientific Notation

Proper Scientific Notation

Proper scientific notation rewrites real numbers in the form

a.bcdefghij × 10X ,

where a–j denote individual digits of the mantissa or significand, such that a 6= 0 unless all digits are
zero, and b–j are all decimal digits (e.g., b = 2, c = 8). X denotes the exponent, which can be any integer.
In this class, the real number would generally correspond to some measure, like distance, time, pressure,
energy, power, etc.
The total number of digits given in the significand in scientific notation must correspond to the number of
significant digits in the number we are given.

The number 131,511,234 is written as 1.31511234× 108 in scientific notation. While 0.131511234× 109 would
represent the same number, it is not in proper scientific notation (because a 6= 0 unless all digits are zero).

As another example, the number 0.000034100 would be 3.4100 × 10−5 in scientific notation. Notice that we
kept the two zeroes after the 1 because these are assumed to be significant; the number 0.000034100 is assumed
to have 5 significant digits.

Additionally, the number 1020000 would be 1.02 × 106 in scientific notation. If we wished to indicate that
the zeroes after the 2 were significant, we would add a decimal point after the last zero; 1020000. would be
1.020000× 106 in scientific notation.

Finally, the number 1.5121 would be 1.5121×100 in scientific notation; notice the exponent is zero in this case.
In this class, we will make use of scientific notation both in the context of measurements, as well as in the

context of performing fixed-precision arithmetic on the computer. We review the former in Sec. 2.1.1, and the
latter in Sec. 2.1.2.

2.1.1 The Use of Scientific Notation for Measurements

Scientific notation is typically used to record measurements in science and engineering contexts, so that the number
of significant digits is related to the precision of our measuring device. Suppose we have a standard ruler.
With this ruler, we might be able to measure the thickness of a dictionary to a tolerance of 1 millimeter (mm), or
equivalently, 0.1 cm. For example, our measurement with the ruler may indicate that the thickness is 11.0 cm.

Now suppose we wish to construct a bookshelf that can hold exactly 1,000 dictionaries in the standard position.
How long must the bookshelf be? Because our measuring device is limited to the 1 millimeter tolerance, it would
be meaningless and misleading to claim that, based on our measurement, the bookshelf must be exactly 11,000 cm
in length. So it is very important that we keep track of our measurement tolerances, and scientific notation
provides an easy means to accomplish this.

Being comfortable with scientific notation will be essential for succeeding as a professional in this field. If you
are rusty, you are strongly encouraged to next work through all material and quizzes on Scientific
Notation & Significant Figures in https://tinyurl.com/sigdigitsreview.
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2.1.2 Scientific Notation on the Computer

As in our example with the books, the number of significant digits generally corresponds to the precision of
our measuring device. We use computers in this class not to measure physical quantities directly, but to solve
mathematical problems. Computers represent our numerical solutions and perform all arithmetic in scientific
notation.

Computer scientific notation is unique in that a fixed number of significant digits is kept in all arithmetic
operations, regardless of the number’s relation to actual measurements. Therefore we must be careful when in-
terpreting the results our computer gives us, as the computer does not obey the standard rules of arithmetic with
scientific notation. For example, if our computer could only store three significant digits and we were to evaluate
7.13×104−7.11×104, the result would be 2.XY ×102, where XY could be any two digit number. In other words,
a computer that stores three significant digits will always give the result to three significant digits, despite the fact
that in this case, the result is actually only valid to one significant digit.

This is quite different from the normal use of scientific notation for measurements, in which our measurement
apparatus might be able to provide a precision of ±0.01× 104, meaning that the number 1.11× 103 would contain
a digit of significance beyond the capabilities of the measuring device.

In addition, instead of writing the exponent symbols ×10X for all numbers, computers adopt the eX symbol.
That is to say, instead of outputting 1.31041× 10−21, the number 1.31041e-21 will be output.

Examples of Computer Scientific Notation

Suppose we have a computer that can only store three significant digits in the mantissa in scientific notation.
Assume for the purpose of this problem that there is no limit on the range of the exponent. Evaluate the
following expressions, keeping the number of significant digits fixed at three. Also assume that the computer
will completely ignore digits beyond the third significant digit; this is equivalent to always rounding down
in any arithmetic operation. Your answer must be in proper computer scientific notation and correctly.

• 1.49e-22 + 3.11e-21: The answer is 3.25e-21; we were told to ignore the all significant digits beyond
the third.

• 1.49e22 + 3.11e2: The answer is 1.49e22; we were told to ignore all significant digits beyond the
third. Notice that 3.11e2 is completely insignificant and is therefore ignored.

2.2 Quantifying Numerical Error

When we solve mathematical problems on the computer, we typically do so in a way that approximates the exact
solution to some number of significant digits, which might be impossible or impractical to compute by hand.
Determining whether we can trust the computer’s solution is a central focus of this class, and depends entirely on
how much error we are willing to accept in our (typically) approximate solution. So to succeed in this class and as
a professional in the field requires that we understand the error in our approximate numerical solution.

One quite useful strategy for measuring the error in our numerical solution is to force our numerical code
to solve a problem that we can solve exactly by hand. Let’s suppose our numerical solution gives the result
1.0229× 103 seconds, and we find by hand the exact solution to be 1.0220× 103 seconds.

So what is the error in the numerical solution?
Definition: The Absolute Error, corresponding to the absolute difference between numbers n1 and n2 is

given by
EAbs ≡ |n1 − n2|,

so for our example, the absolute error between 1.0220× 103 seconds and 1.0229× 103 seconds is

EAbs = |1.0220× 103 − 1.0229× 103| seconds = 0.0009× 103 seconds = 9× 10−1 seconds

Notice that the numbers going into this expression are accurate to five significant digits, but after the sub-
traction, we have a number that contains only one significant digit of precision. Definition: A reduction in the
number of significant digits due to an addition or subtraction is known as a loss of significance, a catastrophic
cancellation, or a catastrophic subtraction.
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We must be very careful when a catastrophic cancellation occurs when doing arithmetic on the computer,
because the computer will by default store a fixed number of significant digits, regardless of whether a catastrophic
cancellation has occurred. For the example above, a computer might very well give us the answer 9.0129 × 10−1.
It is not the computer’s responsibility to tell us that this number is only valid to a single significant digit; we must
be able to figure this out on our own!

While absolute error can be a useful measure, we are often more interested in the percent error or relative error,
which as we will find can give us the number of significant digits to which we can trust our answer. Definition:
The relative error is the absolute difference, rescaled by the magnitude of the numbers |n1| and/or |n2|, and the
percent error is the relative error expressed in percentage.

There are at least two strategies for computing relative error, and both give similar results for this case, though
only the second provides a means for directly and unambiguously computing relative error used when an exact
solution is unknown. Definition: When the exact solution is unknown, the relative error might instead be referred
to as the relative difference.

The first strategy for computing relative error compares two numbers n1 and n2 and scales the difference by
the magnitude (absolute value) of n2:

ERel,1 =

∣∣∣∣n2 − n1

n2

∣∣∣∣ .
Notice that this measure emphasizes n2 as setting the magnitude, so if the exact value is known, we set n2 to that
value, and n1 as the numerical solution. When n2 and n1 agree to more than a couple of significant digits, the
choice of n1 or n2 in the denominator will not significantly change the relative error. You should be able to prove
this to yourself.

The second strategy for computing relative error could be referred to instead as the relative difference, as
this strategy is used primarily when an exact solution is unknown, and we are interested only in how well two
approximate solutions agree. This second definition of relative error, i.e., relative difference, treats the magnitudes
of n1 and n2 equally, by replacing the |n2| in the denominator by the average of |n1| and |n2|:

ERel,2 =
|n1 − n2|

(|n1|+ |n2|)/2
.

Applying both definitions to our two numbers (assuming 1.0220× 103 is the “exact” value) yields results that
agree to all significant digits:

ERel,1 =
0.0009× 103

1.0220× 103
= 9× 10−4 = 9× 10−2%

ERel,2 =
0.0009× 103

1.02245× 103
= 9× 10−4 = 9× 10−2%.

Notice that we only kept one significant digit in our result, because 0.0009 × 103 is only known to one significant
digit. Often Relative Error is used interchangeably with Percent Error; in this case, the Percent Error is 9×10−2% =
0.09%.

Now consider a very basic question: To how many significant digits do two numbers agree? For example,
suppose the numbers are 1.0220× 103 and 1.0229× 103? Clearly we would say they agree up to and including the
fourth significant digit, so our answer is 4. But what about 1.0220 × 103 and 1.0221 × 103? Clearly they agree
better, so it seems reasonable to say that the number of digits of agreement does not need to be an integer! In the
former case, we’d say that the two numbers agree to between 4 and 5 digits, but closer to 4, and in the latter case,
we’d say that the two numbers agree to between 4 and 5 digits, but closer to 5.

It is easy to count the number of digits of agreement between two numbers by eye, but how could we teach a
computer to do this automatically? We could attempt a complicated algorithm that manually scans the digits of the
number, seeing that, e.g., 100. minutes = 1.00× 102 minutes and 101 minutes= 1.01× 102 minutes agree to almost
3 significant digits. But notice that if we chose a different unit of time, say “ticks”, where 100. minutes=99.0 ticks,
then the two measurements would be 99.0 ticks and 100.0 ticks. Notice that the two numbers differ by only 1 part
in 100, just like 100 and 101. Clearly we do not wish to define the number of digits of agreement based on our
choice of unit, so this notion of counting digits of agreement is surely wrong, as it would depend on our number
base and our choice of unit.
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How do we solve this problem?
Consider the fact that the relative error between 1.0220× 103 and 1.0229× 103 is 9× 10−4, and these numbers

agree to about 4 significant digits.
Similarly, the relative error between 1.02200 × 103 and 1.02209 × 103 is 9 × 10−5, and these numbers agree to

about 5 significant digits.
So it seems there is a pattern: look at the exponent of the relative error to get approximately the correct number

of digits of agreement. What mathematical expression would convert 9× 10−5 to a number that is nearly 5? If we
can answer this question, then we can program a computer to give us the correct number of significant digits of
agreement, SDA.

Based on this pattern, we can see that SDA must satisfy

SDA = − log10ERel + 1

Using this expression, we find that 1.01000 and 1.00000 yield an SDA of approximately 3, as expected. In addition,
notice that 0.9900000 and 1.0000000 will give about 2.998 significant digits—i.e., almost 3 significant digits of
agreement as well.

In this course, when you are asked to compute the logarithmic relative error between two numbers log10ERel,
it is very important that you remember the very close relationship between this difference and the number of
significant digits of agreement SDA.

Exercises:

1. How would you write the number 1020000 in proper scientific notation if the first four digits (starting
with the 1 on the left) were significant?

2. Use scientific notation to write the thickness of the dictionary (given in the first example of the chap-
ter) based on the 1 millimeter tolerance measurement. Based on the fact that digits after the least
(rightmost) significant digit are completely unknown, write the range of widths that the bookshelf
might require. Assume that the ruler always rounds down to the nearest millimeter; i.e., if the book’s
thickness falls between 11.00 cm and 11.09999... cm, we round to 11.0 cm.

3. Suppose we measure the thickness of a dictionary in our laboratory to be 11.0 cm, and our colleagues
in Austria measure their lab notebook to be 4.5 cm thick. How many significant digits do we obtain in
our measurement? How many significant digits do our colleagues measure? Assuming that we use the
same ruler as described in the previous exercise, if we were to stack the dictionary and lab notebook
atop one another, to how many significant digits do we know the total height, based only on our current
measurements?

4. To how many significant digits do 1.023151 × 10−30 and 1.0̄ × 10−30 (i.e., the exact number 10−30)
agree? Your answer must be in the form “Between N and N + 1 significant digits”, where you must
fill in the integers N and N + 1.

5. To how many significant digits do n1 = 1.023151× 10−30 and n2 = 0.000000× 10−30 agree?

Solutions:

1.1.020×106

2.Thicknessofdictionary:1.10×101cm.Sincedigitsaftertheleastsignificantdigitarecompletely
unknown,thewidthofthebookshelfwillrangefrom1.10×104cmto1.109̄×104cm=1.11×104cm.
Sotobesafe,weshouldconstructourbookshelftobe1.11×104cminwidth.

3.Howmanysignificantdigitsdoweobtaininourmeasurement?Answer:3.Howmanysignificant
digitsdoourcolleaguesmeasure?Answer:2.Assumingthatweusethesamerulerasdescribedin
thepreviousexercise,ifweweretostackthedictionaryandlabnotebookatoponeanother,tohow
manysignificantdigitsdoweknowthetotalheight,basedonlyonourcurrentmeasurements?Answer:
Between2and3,butcloserto3.Canuseourmeasureofsignificantdigitstogetabetteridea.

4.Between2and3significantdigitsofagreement.

5.0significantdigitsofagreement.MustuseErel,2here.Noticethatwecouldsimplyswapn1andn2

anduseErel,1instead;thereisnothingspecialaboutassigningzeroton1insteadofn2.
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MATH 521, Fall 2018 Notes

Prof. Zachariah B. Etienne

Chapter 3: Number Storage and Arithmetic on the Computer

Great resource: http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html
Computers store all information, including numbers, in a binary number base system consisting of ones and

zeroes. So when doing arithmetic on the computer, we must be very cautious because computers allocate a limited
number of binary digits to any given number.

In practice, it is rare that you would need to convert from decimal to binary format, but unless you understand
how numbers are stored in binary format on the computer, you will sometimes be very confused by your computer’s
results. Thus the focus in this section will be on better understanding the limitations of finite precision arithmetic
and how these limitations can sometimes be addressed.

In general, numbers on the computer are stored in one of two basic formats: Integers and Floating Point.
Section 3.1 reviews the former and Sec. 3.2 the latter.

3.1 Integers on the Computer

In most modern programming languages, integers are a type of number that get exactly 32 bits (i.e., a set of 32 ones
and zeroes) of storage space. This means that 232 integers n can be represented using this data type, typically all
numbers n satisfying −231 ≤ n ≤ 231 − 1 (using two’s complement: http://tinyurl.com/twoscomp), meaning
that integers from about −2.147× 109 to +2.147× 109 can be represented exactly.

Integer arithmetic on computers will be exact as long as no part of the calculation exceeds the bounds of storage
allocated to an integer in your given calculation. When this happens the results will usually be complete nonsense.

So we must either have foresight that no number will exist beyond these bounds before jumping in to a
calculation using this data type, or regularly check that we are getting close. Otherwise our results will in general
be untrustworthy.

Words of caution

Before doing integer arithmetic, first check how many bytes are allocated to the “integer type” in your chosen
programming environment. Different programming environments adopt different standards for integer types.
For example, in some implementations of C, an integer is defined as having 2 bytes or 16 bits of storage space
(there are 8 bits in a byte). For 16 bits of storage, an integer n spans only the much more limited range
−215 ≤ n ≤ 215 − 1, or −32,768 to 32,767.

16 or 32-bit integer calculations can be useful for very basic arithmetic. Unfortunately this is a very limited
data type. For example, in the case of number theory we can contend with absolutely gigantic integers. What
are we to do in this case? The answer is to use so-called “arbitrary precision arithmetic”, which is built-in
to Matlab and some symbolic calculators like Mathematica. For those of us using compiled languages like
C/C++/FORTRAN, arbitrary precision arithmetic libraries exist and can be used for this purpose.
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3.1.1 Exercises

Exercises:

1. Using two’s complement, what range of unsigned integers n are stored in 6, 8, and 10 bits?

2. Using two’s complement, what range of signed integers n can be stored in 6, 8, and 10 bits?

3. Assuming the following bits are ordered such that the rightmost bit is the 20 column, the second-to-rightmost
bit is the 21 column, etc., convert the following 6-bit binary numbers to unsigned integers in base-10.

(a) 010011

(b) 100000

(c) 011111

(d) 111110

(e) 011101

4. Assume that we have an integer format in which the leftmost bit sets the sign of the integer, where the number
is negative if the bit is 1 and positive otherwise. Convert the following 6-bit binary numbers in this format
to signed integers in base-10. For all bits except the leftmost bit, assume the same bit ordering as in the first
problem.

(a) 010011

(b) 100000

(c) 111111

SolutionstoExercises:

1.0≤n≤63,0≤n≤255,and0≤n≤1023,respectively

2.−32≤n≤31,−128≤n≤127,and−512≤n≤511,respectively.

3.(a)through(e):19,32,31,62,and29,respectively.

4.(a)through(c):19,-0(signedzero),and-31,respectively.

3.2 Floating Point Numbers on the Computer

But what are we to do if our calculations involve rational, irrational, real, or complex numbers that may span
many orders of magnitude and do not need to be exact? This is quite often the case in science and engineering
applications for which we use computers to model systems for which we do not have exact measurements, and for
which exactitude is therefore not a strict requirement. In this case, your best bet be to use numbers stored in
floating point format, where the “point” denotes the decimal point, which “floats” according to the exponent of
the number. Proper scientific notation, described in Chapter 2, is one example of a floating point number format.

How floating point numbers are stored is very easy to understand if you are familiar with scientific notation.
For example, suppose we measure some event to be 154,132,000 nanoseconds in duration using a clock that can
only measure to the nearest 1,000 nanosecond increment. We conclude that our clock measures the duration of
this event to six significant digits. This measurement can be represented in scientific notation as 1.54132 × 108

nanoseconds.
Definitions: Notice that 1.54132× 108 consists of two numbers; the number before the × and the number in

the exponent above the 10. The former is called the mantissa or significand, which in this case is stored to 6
significant digits and the latter the exponent. So on a base-10 computer, storing such a number would require a
total of 6+1 “deci-bits” (i.e., each “deci-bit” can store numbers zero through nine; notice that if the first “deci-bit”
can be zero, in order to denote the number zero).

However, computers are base-2 machines, storing numbers as sets of ones and zeroes. We have reviewed how
computers store integers, but how can they store floating point numbers?

Definition: In this class, we will make extensive use of computer scientific notation, which takes the form
mantissaeexponent. So for example, the number 9.183× 10−5 is written 9.183e-5 in computer scientific notation.
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3.2.1 Floating-Point Arithmetic with Fixed Storage: Base-10 Example

Since we are more familiar with numbers written in decimal (base-10) and not binary (base-2), let us first imagine
a computer that stores floating point numbers using a limited number of base-10 “deci-bits”:

Example: Base-10 computer that stores 2 significant digits

Imagine you have a base-10 computer number format that can only store 2 significant decimal digits of precision in
the mantissa (with an added sign bit), and can only store integer exponents in the range [−5,+4] (because there are
10 digits between −5 and 4, inclusive). In addition,

• Definition: Overflow: Numbers greater in magnitude than the largest representable number in a finite-precision
format will be evaluated to Infinity if the number is positive or -Infinity if the number is negative. For
this number format, expressions that — when evaluated — result in numbers greater than to 9.9e4 or less than
-9.9e4 are evaluated to +Infinity and -Infinity, respectively.

• Definition: Underflow: Positive numbers smaller than the smallest nonzero number will be evaluated as zero.
Negative numbers larger than the smallest nonzero number will be evaluated as negative zero. For this number
format, numbers smaller than 1.0e-5 but larger than zero will be evaluated to 0.0e0. Numbers larger than
-1.0e-5 but smaller than zero will be evaluated to -0.0e0.

1. What is the largest number ε storable in a number format such that 1 + ε will evaluate to 1? (In this class,
we will define this ε as machine epsilon. Warning: There are multiple definitions of “machine epsilon” in the
literature; this is the one we will use throughout this class.)

2. Next evaluate the following expressions using this computer number format; you must abide by the restrictions
of the computer number format in your calculations, and your answers must be in the same number format:

(a) 1.0e0 + 3.1e-1

(b) 4.5e-3 + 5.5e-1

(c) 1.0e-3*5.5e4

(d) 1.0e3/5.5e-5

(e) 1.0/(1.0e3/5.5e-5)

SolutionstoExercises:

1.Inanynumbersystemwewillencounterinthisclass,machineepsilonaswehavedefineditcanbefoundvia
thefollowingtwo-stepprocess:

1.Findthefirstnumberrepresentableinthisnumbersystemthatisgreaterthanone.CallthatnumberM.
ClearlyM−1isarepresentablenumberinthenumbersystem.

2.MachineepsilonissimplythelargestnumberinthisnumbersystemthatislessthanM−1.Tip:Asyou
workthroughthisprocess,alwayscheckthatM,M−1,andyourmachineepsilonarerepresentablein
yournumbersystem.Otherwiseyouaredoingitwrong.

Nowlet’sapplythisprocesstothisproblem.Thesmallestnumbergreaterthanoneinthisnumbersystemis
M=1.1e0.Further,M−1=0.1=1.0e-1isanumberinthisnumbersystem.Thusfindingmachineepsilonis
equivalenttofindingthelargestnumberlessthanM−1=1.0e-1inthisnumbersystem.Clearlythatnumber
isε=9.9e-2,asthereisnonumberlargerthanthisbutsmallerthan1.0e-1inthisnumbersystem.

2.

(a)1.3e0

(b)5.5e-1.Let’srewritetheexpressionas4.5e-3+5.5e-1=5.5e-1*(1+4.5e-3/5.5e-1.Since
4.5e-3/5.5e-1<εm,thiswillevaluateto5.5e-1.

(c)5.5e1.Notethat5.5e5isrepresentableinthisnumberformat.

(d)Infinity.Notethat5.5e-5isrepresentableinthisnumberformat,and1/5.5e-5≈1.8e4isalsorepre-
sentable.Butwhenmultiplying1.8e4by1.0e3,wegetanumberthatexceedstheboundsofournumber
format.

(e)0.ThenumberinparentheseswillevaluatetoInfinity,andanyfinitenumberdividingInfinitywille
evaluatetozero.
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3.2.2 Double Precision Floating Point Arithmetic

Computers store floating point numbers in base-2, most commonly using either 32 or 64 bits, with the former
being called single precision and the latter double precision. In this class, and in most scientific, mathematical, and
engineering contexts, we will exclusively use double precision.

Source (vetted):
https://en.wikipedia.org/w/index.php?title=Double-precision_floating-point_format&oldid=688044028

Double Precision Floating Point Format

According to the IEEE 754 technical standard, double precision floating point numbers are stored in 64 bits on the
computer as follows:

• Bit 63: Sign bit S

• Bits 62–52: exponent (11 bits) X.

• Bits 51–0: mantissa or significand (52 bits) M

With few exceptions (see box below), double precision numbers N are represented as follows, given mantissa bits
b51–b0:

N = (−1)S(1.b51b50...b0)× 2X−1023, where 1.b51b50...b0 is a binary floating point number, not a decimal

or equivalently,

N = (−1)S

(
1 +

52∑
i=1

b52−i2
−i

)
× 2X−1023, where X =

10∑
i=0

b52+i2
+i.

Exceptions to the above expressions

The exponent X, having 11 bits, can represent 211 = 2048 unique integers, of which only the 2046 numbers between
-1022 (X = 1) to 1023 (X = 2046) are consistent the above definition for N . The exceptional cases X = 0 and
X = 2047 are as follows:

• The exponent X = 0 and a mantissa of

– all zeroes corresponds to N = 0. If the sign bit is set to 1, then N = −0, the signed zero.

– anything other than zero typically corresponds to N = ±0 (depending on the sign bit), but this is
implementation-dependent. Sometimes (rarely) these bits are used to store nonzero numbers smaller in
absolute magnitude than roughly 2−1022 ≈ 10−308.

• The exponent X = 2047 and a mantissa of

– all zeroes corresponds to ±Infinity, where the sign of the infinity is given by the sign bit.

– any value except zero corresponds to NaN (Not a Number, which is output if an undefined arithmetic
operation, like 1/0, is attempted).

3.2.2.1 Exactly Representable Numbers in Double Precision

In general we should expect a number to be represented to only 15–16 significant digits in double precision. For
example, the decimal number 0.1 ≡ 1

10 is known exactly in base-10 floating point as

0.1 ≡ 0

100
+

1

101
+

0

102
+

∞∑
n=3

0

10n

= 1.0̄× 10−1.

But when we convert this number to base-2 floating point, notice that we’ll have to represent it as

0.1 =
b0
20

+
b1
21

+
b2
22

+ ...,

which happens to be a repeating binary decimal! And since double precision only stores 52 significant bits, the
repeating binary decimal is artificially stopped at the 52nd bit, yielding an error that is about 1 part in 1016.
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But what numbers can we store exactly in double precision? Clearly powers of two like 1
2 = 1 × 2−1, or

1
21000 = 1× 2−1000 are exactly representable. Let’s dig further with an example:

Example #1

Consider the double precision floating point number 0:1[10 zeroes]:1[51 zeroes]. To what does this
correspond in decimal? Is the number exact?

• The sign bit is 0, so this is a positive number.

• Regarding the exponent, Bit 62 is 1, all others zero, so X = 210 = 1024, and our exponent term is 21024−1023 =
21 = 2.

• Regarding the mantissa, Bit 51 is 1, all others zero, so
∑52

i=1 b52−i2
−i = 2−1 = 1/2.

So our number is +(1 + 1/2) ∗ 2 = 3, which is an exact number.
Next notice that if we set all significand bits to zero, then the number becomes +(1 + 0) ∗ 2 = 2. If we then

“flip” all the bits in the exponent, we’ll have 0[10 ones], which is the same number when counting in binary on
our fingers as if we held up all of our fingers: 1023. Thus the result would be 1. We already determined that the
number zero is represented in double precision (recall that +0 is represented by all bits being zero). So we have
demonstrated that integers 0, 1, 2, and 3 are all exactly representable in double precision. But we also know that
if we flip the sign bit, we can immediately get -3, -2, and -1.

Therefore, we have proven that the contiguous set of integers N ∈ [−3 : 3] is exactly representable in double
precision.

Example #2

What is the largest range of contiguous integers that can be stored in double precision?

First let’s consider the largest integer we could possibly store exactly in double precision. Clearly we’d just
need to maximize the exponent at 1023, and set all the bits in the mantissa to 1’s. This will result in the integer
Nlarge, where

Nlarge = (1 + 2−1 + 2−2 + ...+ 2−52)× 21023

= 21023 + 21022 + 21021 + ...+ 21023−52.

The result is nothing more than the sum of some very large integers, and the result is an integer.
But what is the next integer smaller than Nlarge that can be represented exactly in double precision?
The next smaller integer should be the same double-precision number, but with the least significant bit flipped

to zero:
Nnext largest = (1 + 2−1 + 2−2 + ...+ 2−51 + 0× 2−52)× 21023.

Notice that the difference between the largest and second-largest integer exactly representable in double precision
is Nlargest − Nnext largest = 21023−52 � 1, so these two integers are not contiguous. So what would be the largest
integer such that the next largest integer is just one less?

Since the significand is a number that is 52 bits, and we multiply by 2L, where L ranges from −1022 to 1023,
how about we multiply the largest possible significand by 252? Then we’d have

N52 = (1 + 2−1 + 2−2 + ...+ 2−52)× 252

= (252 + 251 + 250 + ...+ 1)

= 253 − 1 ≈ 9× 1015.

Ah, but we can also represent 1× 253 exactly as well! Notice also that the next integer smaller than N52 would be

N52, next largest = (1 + 2−1 + 2−2 + ...+ 2−51 + 0× 2−52)× 252

= (252 + 251 + 250 + ...+ 21 + 0)

= N52 − 1.
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Next, you should be able to show that 253 + 1 is not an integer representable exactly in double precision. Thus
we have found that 253 − 1 and 253 are the largest two consecutive integers that can be stored exactly in double
precision. You may also find it instructive to prove that N52 − 2 and N52 − 3 can also be stored exactly, and that
the pattern continues all the way to N = 0. But we also know that if we flip the sign bit, we can get the negative
versions of each of these integers.

Therefore double precision arithmetic can store the complete set of contiguous integers between −253 (≈ −9×
1016) and 253 (≈ 9× 1016), inclusive.

3.2.2.2 Summary: Limitations of Double Precision

Limitations of Double Precision

• Definition: Machine epsilon is the largest number ε representable in a given number format such that
1 + ε = 1. In double precision, this number is 2−53 ≈1.11e-16. Warning #1: There is no IEEE 754
standard definition of machine epsilon; you fill find other texts define machine epsilon differently.a Warning
#2: Different implementations of the IEEE 754 standard might behave differently near machine epsilon, yielding
machine epsilons of 2.22e-16 or 4.44e-16 instead. For simplicity, we will normally assume 16 decimal
digits of significance for double precision.

• Magnitude of smallest nonzero number: 2−1022 ≈2.22e-308. We will typically round to 10−308 in this
class.

• Magnitude of largest non-infinite number:

21023(1 + 2−1 + 2−2 + ...+ 2−51 + 2−52) = 21023 + 21022 + ...+ 21023−52 ≈ 1.8e308

We will typically round to 10+308 in this class.

• Largest set of contiguous integers: From −253 ≈ -9e15 and 253 ≈9e15.

aOne common alternative definition is the smallest number in a given number format that, when added to 1 yields a number
not equal to one. This is not the definition we will use in this class.

3.2.2.3 Loss of Significance

(References/Sources: https://en.wikipedia.org/wiki/Loss_of_significance
http://math.stackexchange.com/questions/136634/rewriting-to-avoid-catastrophic-cancellation)

Definition: Loss of significance or catastrophic cancellation occurs when significant digits are lost in an
arithmetic operation. Suppose our number format stores 8 significant digits. Then

1.1204002e-1 - 1.1204000e-1

will yield 2.e-8. However, because our number format stores 8 significant digits, we can expect that for this
case, the numbers after the first significant digit will be nonzero!

Loss of significance can be a major problem when performing double precision arithmetic, because we typically
assume that we can trust our double precision results to about 16 significant digits. Your computer will not warn you
when a catastrophic cancellation has occurred, and doing so would greatly slow your calculation. We must therefore
be able to identify when a loss of significance has occurred by analyzing the expressions ourselves. Typically this
will involve adding print() statements to our code when we obtain results that are unusual. Numerical analysis
can be hard work, but when we are successful, our efforts can be greatly rewarded!
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Exercises:

You have added print() statements into your code to try and diagnose why your numerical solution (using double
precision) appears to be strange. Below is a list of arithmetic operations that your code has performed, and you are
to write the number of significant digits that remain after the following expressions are evaluated in double precision.
You are to assume that double precision numbers input into all expressions are known to 16 significant digits.

1. 1.1204002e-1 - 1.1204000e-1 (same as example above, but in double precision)

2. 5.2101e-5 - 5.2101e-4

3. 5.2111e-5 - 5.2101e-5

4. 5.2111e-5 - 5.2101e-6

5. 5.211104e-5 - 5.211101e-5

6. 5.2101e-5 - 5.2101e-5

SolutionstoExercises:

1.7significantdigitsarelost,so9remain.

2.Nodigitsarelost,so16significantdigitsremain.

3.3significantdigitsarelost,so13remain.

4.Nodigitsarelost,so16significantdigitsremain.

5.6significantdigitsarelost,so10significantdigitsremain.

6.Thereisexactcancellationinthiscase(eachnumberisrepresentedbyexactlythesamebits),sodoubleprecision
willyieldzeroexactly,resultinginagainofaninfinitenumberofsignificantdigits.Inpractice,thiswillhappen
rarely.

What happens to the lost significant digits?

Although digits of significance may be lost when performing double-precision arithmetic, the arithmetic will always
produce a consistent result. For example, if you were to set

a = 2.150121e0 - 2.150120e0

b = 2.150121e0 - 2.150120e0

Even though we have lost about 6 significant digits of a and b, the result from these arithmetic operations will always
be consistent. In this case, although we can trust the results of the subtractions up to about the tenth significant digit,
all digits beyond the tenth in both a and b will be identical, as the bits representing a and b are identical. Therefore,
if we were to evaluate, a-b, we would obtain the exact result zero.
Next consider

c = 8.924583e0-8.924582e0

Again, the exact result is 1e-6, and we should expect our double-precision result to match this exact result to about
10 significant digits (and not 16, due to the loss of significance). However, in this case the double-precision numbers
involved in the subtraction are different. Thus the digits beyond the tenth in c will in general be completely different
than a or b. Therefore, we can have no expectation of consistency between c and a, and we should expect c-a to
evaluate to a number that is nonzero.
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3.2.2.4 Tips for determining how many significant digits of agreement SDA (see Chapter 2) you
can expect between double-precision and exact arithmetic

Note that this neglects guard digits.

1. Evaluating the expression according to proper order-of-operation, check for arithmetic steps that go out of
bounds (i.e., check for underflow or overflow errors) in double precision arithmetic. To this end, recall
that the smallest nonzero number is roughly plus or minus 1e-308 and the largest non-infinite number has
magnitude 1e+308. If this happens, evaluate to zero or ±∞ as appropriate.

2. Check for catastrophic cancellation (a.k.a., loss of significance).

3. Check for numbers that are exactly representable by double precision (e.g., all integers between −253 and 253

(inclusive), as well as ±1
2 to some power). If these exist, they are known to an infinite number of significant

digits. If not, they are generally known to only 15–16 significant digits.

4. Dividing or subtracting two numbers that are guaranteed identical to all significant bits will yield exactly one
or zero, respectively.

5. Transcendental functions like sin(), cos(), log(), and log10() are typically evaluated in double precision
using a Taylor series approximation. So even if the input and result are both numbers exactly representable
in double precision, you should generally expect only 16 significant digits of precision in the result.

3.2.3 Examples of Finite Precision Arithmetic Using Double Precision

Exercises:

When the following expressions are evaluated by the computer, to how many significant decimal digits will the
numerical result agree with the exact result? Your answer will consist of a single integer (∞ is an acceptable
answer). If the integer is finite and nonzero, your answer will be accepted if it is within 1 decimal digit of the exact
answer.
We use computer scientific notation, such that, e.g., 5.63e22 ≡ 5.63 × 1022. For the purpose of this problem, apply
IEEE 754 standard-compliant double precision arithmetic, assuming all given integers represented in integer or
floating point format between −253 and 253 (i.e., integers between ≈ −9 × 1015 and ≈ 9 × 1015 inclusive) are exact
(for example, 2.01e2 is exact), as well as powers of ± 1

2 . Otherwise, assume that in double precision the number is
only known to 16 significant digits, and that machine epsilon is 4e-16.

1. 4 - 1

2. 1e23/2.312e101 + 1e-20

3. 1e20 - 1e200/1e-200

4. (1e-250/1e-250)

5. 1.3512e-45 - 1.3512e-45

6. (1e55 - 1e35) + 1e55

7. 1 - 1e-12

8. (1e120 * 1e120 * 1e120)

9. 1.0/256.0

10. (2.51-2.50)/(2.51-2.50)

11. log10(1e-145) - 2e-200

12. 5e-200*5e-2 + 2

13. 7 + 2.4e-230/5e280

14. 7 + 2.4e230/5e280

15. 1/100

16. log10(2e-230) - 2e-200

17. (3.1415-3.14)/(3.1415-3.14)

18. 1/1024

19. 3.2e-200/5e-202 + 2

20. (5.0e-200 + 1)/(1.2e1+4e0)

Additional problem set. Same instructions as previous problem. Solutions provided in class.

Additional Exercises:

1. 1e-1/1.0e-1

2. 2e10 - 1e-100

3. 4.34/2

4. 1.0 + (5.0e33 - 1e-14)

5. 8.0e200 + 1.0

6. (2.104e4 - 2.103e4)/1.0e1
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SolutionstoExercises:

1.4-1:4and1areexactlyrepresentedindoubleprecision,andwehavealreadyproventhat3isalsorepresentedexactly
indoubleprecision.Thedouble-precisionresultagreeswiththeexactresulttoaninfinitenumberofsignificantdigits.

2.1e23/2.312e101+1e-20:Evaluating,wegetabout0.5×10
23−101

.23−101=−78,soweget0.5×10−78
+10−20

.The
firstnumberinthesumisabout59ordersofmagnitudelessthanthesecond.Additionsindoubleprecisionareonly
sensitivetoabout16significantdigits,sothefirstnumberisirrelevantandtheresultindoubleprecisionis10−20

.Ignoring
theaddition,thenumber10−20

cannotbeexactlyrepresentedindoubleprecision.Thereforethisresultisconsistentwith
theexactsolutionto16significantdigits.

3.1e20-1e200/1e-200:1e200/1e-200=1e400,whichexceedstheboundsofdoubleprecision,thuswegetInfinity,sothe
answeriszerodigitsofprecision.

4.(1e-250/1e-250):1e-250/1e-250=1.Notethatevenif1e-250isnotexactlyrepresentableindoubleprecision,its
representationinbitsisthesameforbothnumeratoranddenominator.Soimagineyouhaveastringofbitsdividedby
thesamestringofbits.You’llget1exactly,and1isexactlyrepresentablebydoubleprecision.Thustheansweris:the
double-precisionresultisconsistentwiththeexactresultto∞-manydigitsofprecision.

5.1.3512e-45-1.3512e-45:Imagineyouhaveastringofbitssubtractingthesamestringofbits.You’llget0exactly,
and0isexactlyrepresentablebydoubleprecision.Thustheansweris:thedouble-precisionresultisconsistentwiththe
exactresultto∞-manydigitsofprecision.

6.(1e55-1e35)+1e55:Noticethecatastrophiccancellationthatoccurswithintheparentheses.So
(1e55-1e35)+1e55=1e55+1e55=2e55,
whichisconsistentwiththeexactresultto16significantdigits.

7.1-1e-12:Noticethat1isexact,but1e-12isnot.Thereisnocatastrophiccancellationhere;wegetananswerthatis
consistentwiththeexactresultto16significantdigits.

8.(1e120*1e120*1e120):Theresult,1e360,exceedstheboundsofdoubleprecision.Thuswegetanoverflow:Our
answerwillbecorrecttozerosignificantdigits.

9.1.0/256.0:Both1and256areexact.Also,1/256=1/2
8

=2−8
isexactlyrepresentableindoubleprecisionaswell.

Thustheansweris:thedouble-precisionresultisconsistentwiththeexactresultto∞-manydigitsofprecision.

10.(2.51-2.50)/(2.51-2.50):Let’slookatthenumeratorfirst:(2.51-2.50).Neitherofthesetermsisanexactpower
of

1
2oraninteger,andtheresult,0.01isalsonotanexactpowerof

1
2.Wewillget0.01to14significantdigitsdueto

thelossofsignificance.Butthedenominatorwillresultinexactlythesamenumber:0.01toabout14significantdigits.
Therefore,thenumeratoranddenominatorwillbeidenticalstringsofbitsdividingeachother:1exactly.Sotheanswer
is∞.

11.log10(1e-145)-2e-200:Notethatlog10(1e-145)willbecomputedviaaTaylorseriesonthecomputer,sodespite
thefactthattheexactresultisaninteger,−145,whichcanbeexactlyrepresentedindoubleprecision,theTaylorseries
approximationcanonlybetrustedto16significantdigits!Soweget-145-2e-200.Noticethecatastrophiccancellation
onthesecondterm.Sotheansweris-1.45e2to16significantdigits.

12.5e-200*5e-2+2:Noticethefirsttermevaluatesto25e-202=2.5e-201,sowegetcatastrophiccancellation.Since2
isexactlyrepresentedindoubleprecision,thedoubleprecisionresultisconsistentwiththeexactresulttoabout201
significantdigits.

13.7+2.4e-230/5e280:7isexactlyrepresentable,andtheexpression2.4e-230/5e280willyieldanunderflowindouble
precision,givingadoubleprecisionresultof7exactly.Theexactresultis7plusaperturbationatthe511thdigit.Thus
thedoubleprecisionandexactresultsagreetoabout511significantdigits.

14.7+2.4e230/5e280:7isexactlyrepresentable,andtheexpression2.4e230/5e280willyieldanumberthatisoforder
1e-51.Recallthatmachineepsilonisdefinedasthelargestεsuchthat1+ε=1.Indoubleprecisionmachineepsilon
isapproximately4e-16,so7+1e-51~7(1+1e-52)is7exactly.Thusthedoubleprecisionandexactresultsagreeto
about51significantdigits.

15.1/100:Thedivisionisnotapowerof2,sotheansweris16significantdigitsofagreementbetweendoubleprecisionand
theexactanswer.

16.log10(2e-230)-2e-200:log10(2e-230)iscomputedviaTaylorseries,thuswillyieldadoubleprecisionresultthat
matchestheexactresultto16significantdigits.The-2e-200willnotaffecttheresult.Theansweris16.

17.(3.1415-3.14)/(3.1415-3.14):Thenumeratoranddenominatorwillevaluatetoexactlythesamebits,despitebeing
consistentwiththeexactresultto16significantdigits.Thustheanswerindoubleprecisionis1exactly,matchingthe
exactresultto∞significantdigits.

18.1/1024:1024=2
10

,sotheexpressionis2−10
,anexactlyrepresentablenumberindoubleprecisionthatmatchesthe

exactresultto∞significantdigits.

19.3.2e-200/5e-202+2:3.2e-200/5e-202isanumberoforder1e1.Theresultisnotanumberexactlyrepresentablein
doubleprecision,sowillbeconsistentwiththeexactsolutionto16significantdigits.

20.(5.0e-200+1)/(1.2e1+4e0):(5.0e-200+1)indoubleprecisionyields1exactly,whichdiffersfromtheexactresult
atthe200thsignificantdigit.Thedenominatorwillevaluatetoanexactintegersince1.2e1and4e0arebothlessthan
2

52
andthereisnolossofsignificance.Thedoubleprecisionresultthenis1/16,whichisanexactpowerof2,yielding

thenumber1/16exactly.Thisisconsistentwiththeexactresulttoabout199significantdigits.
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3.2.3.1 Adjusting an Algorithm to Minimize Loss of Significance

Let us now consider an algorithm that suffers from a severe loss of significance in certain cases: the quadratic
formula.

The quadratic formula solves for the roots x1 and x2 that solve the following quadratic polynomial

ax2 + bx+ c = 0.

The quadratic formula is given by

x1, x2 =
−b±

√
b2 − 4ac

2a
.

In pseudocode, we could represent this algorithm as follows:

Algorithm for Solving Quadratic Polynomials:

function quadratic(a, b, c, x)

x[1] = ( -b + sqrt(b^2 - 4*a*c) ) / (2*a)

x[2] = ( -b - sqrt(b^2 - 4*a*c) ) / (2*a)

end function

Notice that when b2 & 1016 × 4ac,
√
b2 − 4ac ≡ b in double precision. Thus for the first root we would get

x1 = −b+
√
b2−4ac

2a = −b+b
2a = 0, which will in general be incorrect to all significant digits.

For example, consider the case in which a = 1, b =1e10, and c =1e-10. The exact roots are given by
x1, x2 = −10−20,−1010, but the roots computed in double precision will be given by

x1, x2 =
−1010 ±

√
(1010)2 − 4(1)(10−10)

2(1)

=
−1010 ±

√
1020 − 4× 10−10

2

=
−1010 ±

√
1020(1− 4× 10−30)

2

=
−1010 ±

√
1020(1)

2
= 0, −1010,

where in the second-to-last step, we applied the fact that in double precision (1−4×10−30) ≡ 1, since 4×10−30 < εm
(note that machine epsilon equally applies whether adding to or subtracting from 1). So we have found that x1 is
incorrect at all significant digits, while x2 will be correct to about 16 significant digits. We conclude that was a
complete loss of significance in computing x1.

Sometimes, but not always there is an alternative strategy for getting around limitations of double precision
arithmetic. In this case, it turns out that we can rewrite the quadratic formula for x1 as follows:

x1 =
−b+

√
b2 − 4ac

2a

(
−b−

√
b2 − 4ac

−b−
√
b2 − 4ac

)

=
b2 − (b2 − 4ac)

2a(−b−
√
b2 − 4ac)

=
2c

−b−
√
b2 − 4ac
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Now let’s apply this example, but with this alternative strategy for computing the root of x1:

x1 =
2c

−b−
√
b2 − 4ac

=
2(10−10)

−(1010)−
√

(1010)2 − 4(1)(10−10)

=
2× 10−10

−1010 −
√

1020 − 4× 10−10

=
2× 10−10

−1010 −
√

1020(1− 4× 10−30)

=
2× 10−10

−1010 −
√

1020(1)

=
2× 10−10

−2× 1010

= −10−20,

which will be consistent with the exact result to 16 significant digits. Notice that while we did not eliminate the
loss of significance, we did prevent it from influencing our result.

Exercise:

Rewrite the above algorithm for solving quadratic polynomials to make it more robust for cases in which b2 & 1016×4ac.
Solution:

functionquadratic(a,b,c,x)

if(b^2>1e16*4*a*c)

x[1]=(2*c)/(-b-sqrt(b^2-4*a*c))

else

x[1]=(-b+sqrt(b^2-4*a*c))/(2*a)

endif

x[2]=(-b-sqrt(b^2-4*a*c))/(2*a)

endfunction

3.2.3.2 Tips for minimizing finite precision arithmetic errors

Here are a few tips for minimizing finite precision arithmetic errors on the computer.

1. Avoid obvious addition or subtraction of numbers that are many orders of magnitude different. This may
require rescaling your problem so that extremely large or small exponents do not appear. (Top priority)

2. Definition: Choose numerical algorithms that have small unavoidable errors; i.e., algorithms that natu-
rally avoid loss of significance (like the adjusted quadratic equation formula given above). Using an algorithm
that has small unavoidable errors is no guarantee that catastrophic cancellation will not occur for certain
inputs! (High priority)

3. Definition: Roundoff error is the build-up of numerical errors due to loss of significance. Once the above
problems are addressed, try to minimize the number of floating point operations (i.e., generally more efficient
algorithms have lower roundoff errors). Roundoff errors will generally grow at a rate between

√
Nε (due

to the expected distance traveled from the origin in a random walk after N steps) and Nε (a non-random
walk, adding a single ε error at each step), unless the numerical algorithm exhibits chaotic behavior. If
chaotic behavior is observed, tiny perturbations due to roundoff errors can grow at a rate proportional to eN .
(Medium priority)
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SolutionstoAdditionalExercises:

1.1e-1/1.0e-1:Thenumeratoranddenominatorarerepresentedbyexactlythesamebits,sothedoubleprecision
resultisthenumber1,whichisexactlyrepresentableandconsistentwiththeexactresulttoInfinitelymany
significantdigits.

2.2e10-1e-100:2e10<2
52

,soisexactlyrepresentableindoubleprecision.1e-100isnotexactlyrepresentable.
Thereisacatastrophiccancellationindoubleprecision,leadingtothedoubleprecisionresultof2e10,whichis
exactlyrepresentedasaninteger.Theexactresultisnotaninteger,anddiffersfromthedoubleprecisionresult
atthe110thsignificantdigit.Thustheansweris110.

3.4.34/2:4.34isnotexactlyrepresentableindoubleprecision,anditisknownonlyto16significantdigits.Thus
dividingitbytwowillyieldanumbercorrecttoonly16significantdigits.

4.1+(5.0e33-1e-14):1isexactlyrepresentableindoubleprecision,but5.0e20and1e-14arerepresented
onlyto16significantdigits.(5.0e20-1e-14)willyield5.0e20to16significantdigitsduetocatastrophic
cancellation.Then1+(5.0e20)willyield5.0e20to16significantdigits,againduetolossofprecision.

5.8.0e200+1:8.0e200isrepresentedindoubleprecisionto16significantdigits,and1isexact.Thesumyields
8.0e200to16significantdigitsduetolossofprecision.

6.(2.104e4-2.103e4)/1.0e1:Allnumbersinthenumeratoranddenominatorarerepresentedexactlyindouble
precision.Evaluatingnumeratoranddenominatorseparately,weobtain1.0e1/1.0e1,anexactlyrepresentable
numberindoubleprecision.Thusthedoubleprecisionresultagreeswiththeexactresulttoaninfinitenumber
ofsignificantdigits.
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MATH 521, Fall 2018 Notes

Prof. Zachariah B. Etienne

Chapter 4: Determining the Scale of the Solution

We will find that many of the algorithms we encounter in this class will not work properly unless we first have some
very rough idea (like, within a factor of a few) of the solution. Having some idea of the scale of the solution will
also help us determine whether the computer’s result is reasonable.

To get some sense of the scale of the solution without knowing the solution requires that we use all the
information at our disposal to generate an estimate that is reasonably close. This is known as a “back-of-the-
envelope” estimate or a “Fermi” problem, after Enrico Fermi—a very famous, Nobel-prize winning physicist—as
he was a master at this sort of back-of-the-envelope calculations. Fermi worked on the Manhattan Project–the
project that developed the first atomic bombs. During the first nuclear test, Fermi dropped pieces of paper from his
viewing position to estimate the energy in the blast. His measurement came quite close to the official measurement,
which made use of many sensors.

Being able to reason your way through back-of-the-envelope estimates make excellent job interview question for
those of you who want to get really high-paying jobs in the financial or tech sectors. These sorts of question could
be asked cold in an interview, meaning you have no access to books... just a whiteboard and your own numerical
literacy. As you solve the problem in front of the interviewers, they will learn how you solve problems, as well as
your basic numerical literacy.

4.1 Word Problems

The easiest Fermi problems boil down to basic word problems that require simple arithmetic to solve. Note that
a typical Fermi problem will require basic numerical literacy (e.g., knowing the population of the United States),
working knowledge of undergraduate mathematics (e.g., being able to integrate, differentiate, and compute Taylor
expansions without help), and good analytical reasoning skills.

As a warm-up, let’s suppose you are a graduate student who wishes to increase efficiency and productivity.

Example #1, Question #1

Graduate students are generally expected to work as a GTA or GRA 20 hours per week, spending another 20 hours
on course work. This is of course the ideal scenario, assuming that there is not an urgent research project, midterm
to grade, or exam to take. It also assumes that students are well prepared for their graduate level classes so that the
amount of “brushing up” on previous material is minimized. If any of these assumptions are violated, the 40-hour
week may become a 60-hour week or in some cases a 20 or 30-hour week.
Students on average take 3 courses per semester. Assume that each class is 150 minutes per week. If they are on
average expected to spend 20 hours per week on classes, how many hours outside of class per class in an ideal situation
are they expected to study?

Answer: First we compute the number of hours in total outside of class that should be spent studying. Notice
we must first convert to a consistent unit of time (hours) so we can perform the necessary arithmetic:

20 hours/week - 150 minutes/course/week * (1 hour/(60 minutes)) * (3 courses)

= (20 - 7.5) hours/week = 12.5 hours/week

Thus students are expected to spend 12.5 hours per week on their coursework outside of class, or about 12.5/3
hours per course, which comes to about 4 hours, 10 minutes studying outside of class for each class. Again, this
is an ideal situation, as a student’s level of preparation may be different for different classes, requiring additional
time commitment for some classes.
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Example #1, Question #2

Distracted Dan is not very focused on studying, keeping his cellphone out or the TV on. Each hour he studies is worth
only 60% of the expected study time per week. Roughly how many hours would he need to study for each of his classes,
if he is an otherwise average student? Give the answer as a simplified fraction and an approximate (i.e., within 10% of
exact) decimal.

Answer: We determined in the previous problem that Dan must spend about 12.5 hours studying outside of
class each week. Thus he must spend 12.5/3 hours per course per week, which amounts to a little over 4 hours
per course. 12.5/3 = 25/6, so the amount of time needed each week for studying outside of class per class for
Distracted Dan will be 25/6 * 10/6 = 250/36 = 125/18 = (125*1.1)/(18*1.1)≈140/20 = 70/10 = 7 hours.
The exact value is about 6h 57m.

Example #1, Question #3

Based on Question #2 above, about how many hours per week would Distracted Dan be expected to study on average
outside of class to keep up with all of his classes?

Answer: Distracted Dan takes three courses each semester, and we just determined that the total study time
outside of class required for Distracted Dan per course is nearly 7 hours, so the answer is that Distracted Dan must
study about 3*7 = 21 hours outside of class to keep up with the average student.

Add this to the 7.5 hours spent inside of class, and Distracted Dan’s 20 hour per week course load has ballooned
to nearly 30 hours per week! The moral of the story is that students should not only work hard, but strive to work
efficiently as well. Try to minimize distractions!

When we apply the concepts learned in this class to the real world, we will find that this sort of thinking is
extremely valuable to determining the scale of physical systems as well.

4.2 Undersampling Error

Performing integrals, derivatives, interpolation, and extrapolation of functions on the computer is central to much
of the work we do as when we solve mathematical problems on the computer. Unfortunately, performing these
operations reliably on the computer usually requires that we first determine the basic scales over which the function
we wish to integrate, differentiate, etc., varies.

For example, when evaluating a derivative approximately on the computer, we start from the definition of the
derivative

f ′(x) = lim
∆x→0

f(x+ ∆x)− f(x)

∆x

to say that, for ∆x small enough,

f ′(x) ≈ f(x+ ∆x)− f(x)

∆x
.

Approximations like this are made widely when solving mathematical problems on the computer, because

1. it is difficult to teach computers how to differentiate exactly;

2. sometimes we are only given the function values at a finite number of points; and

3. computers are designed to subtract, add, multiply, and divide extremely quickly.

The question we must answer is, how small of a ∆x will be necessary to obtain a reasonable approximation of the
derivative?. Or equivalently, how finely must we sample the function to get a good approximation of its derivative
at some arbitrary point x?

The answer of course depends on the function. If x is in units of length for example, then we must first estimate
the lengthscale over which f(x) varies. If we chose to approximate the derivative of f(x) = sin(x) at any point x
using the definition of derivative in this way, hopefully you would agree that if we chose ∆x = 10, we should not
expect the answer to be anywhere close to the correct result.1 We refer to this type of error as undersampling
error.

1After all, if x is related to units of length, then sin(x) varies over a lengthscale of 2π ≈ 6.3–its wavelength. If instead x is related to
units of time, then we would say sin(x) varies over a timescale of 2π ≈ 6.3–its period.
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Let’s make this notion of undersampling just a little more rigorous by defining the minimal, or “Nyquist”,
sampling rate.

4.2.1 Minimal, or “Nyquist” Sampling

Suppose we have a function that is a wave with wavelength λ = 1 meter. We refer to λ as the lengthscale of the
problem, and if we wish to interpolate the value of the function to any point, we will need to sample the function
at a resolution of ∆x that is some small fraction of λ.

In fact, the minimum sampling rate for a wave, called the Nyquist sampling frequency or rate, is ∆x = λ/2.
Figure 4.1 shows this graphically. This idea can be applied more generally, even to non-periodic functions, by
simply replacing λ with the scale over which the function varies. The next section explores this more generic notion
by analyzing the scale over which a solution will vary and applying it to estimate computational cost.

-1

-0.5

0

0.5

1

-π 0 π 2π 3π

λλ

x

Nyquist Sampling of cos(x)

cos(x)
Nyquist Sampling Points:

Figure 4.1: Minimal (Nyquist) sampling of a cosine function (solid curve). Nyquist-sampled points, at ∆x = λ/2,
are shown as black dots, which are connected by dashed lines.

4.3 Tying It All Together: Estimating the Cost of Weather Modeling

Example #2

Suppose we wish to produce a climate model that simulates cloud motion. Let’s assume that the tiniest of clouds are
negligible, so that our model is aiming to model large cloud movement. Provide an estimate for the minimum number
of numerical points that we would need to Nyquist sample all the clouds in the Earth’s atmosphere? Ignore the vertical
direction.

One way of solving this problem is to estimate the number of distinct clouds we observe in the sky on average.
Not every day we see clouds, so let’s say 2 of 3 days are cloudy days, and when we consider that Morgantown is a
bit cloudier than the average city (or desert for that matter), let’s drop that to 1 of 2 days. Then on cloudy days,
the average cloudiness is about 30%. So the average fraction of the local sky taken up by clouds is about 30% times
1/2 = 15%.

Now this is at our local position on Earth, so we need to know the fraction of the entire Earth’s atmosphere we
can view at a given time.
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The Earth is roughly 6,000 km in radius (actual radius is around 6,300 km).
How do we figure out the fraction of the sky that we see? Well, this comes down to measuring our horizon. Our

horizon is defined as the plane tangent to our location on the Earth. We obviously cannot see below the horizon
(though there are some exceptions due to the way the atmosphere bends light passing through it). We can see
clouds so long as they are above this tangent plane.

Suppose clouds are at 15,000 feet altitude on average. There are about 3 feet in a meter, so we have 5,000m
or 5 km for the average altitude for clouds. So we get a right triangle: the line from us to the center of the Earth
is about 6,000 km, and drawing another line from the center of the Earth to the cloud height on our horizon.
Connecting these lines yields a right triangle, in which we stand at the right angle, with hypotenuse 6,005 km. Our
goal is to find the subtended angle of our horizon from the center of the Earth.

What is this angle? Basic right-triangle geometry tells us that the angle θ satisfies

cos(θ) =
6000

6005
.

Of course this is very close to 1, which means that the angle must be very small. So let’s Taylor expand cos(θ)
about θ = 0:

cos(θ) = 1− θ2

2
+
θ4

4!
− ...

Since θ2 is small, θ4 is extremely small. so we can get a very good approximation of the angle by simply solving

1− θ2

2
=

6000

6005
≈ 1− 1

1000
.

Thus the total horizon for us if we can see clouds at 15,000 feet is

θ2 ≈ 2

1000
=⇒ θ ≈

√
2

1000
=

1√
500

.

What is the square root of 500? The square root of 100 is 10, so

√
100 = 10 =⇒ 2

√
100 = 20 =⇒

√
400 = 20.

Also, √
100 = 10 =⇒ 3

√
100 = 30 =⇒

√
900 = 30.

So we’re somewhere between 20 and 30, but closer to 20. Let’s just keep 20 for our approximation.
Then the angle subtended by our horizon when looking in one direction is about 1/20 of a radian. Our goal

then is to determine the area of the sky we can see as a total fraction of the overall surface area of the Earth.
Recall that the surface area of a sphere with radius R is derived from the integration formula

Ssphere = R2

∫ π

0

∫ 2π

0
sin(θ)dθ = 4πR2.

We are interested however in the surface area of some circular-like area subtended by an angle ∆θ on the sphere,
so

Scirc area = R2

∫ ∆θ

0

∫ 2π

0
sin(θ)dθ = 2π[− cos(θ)]∆θ0 R2.

We can use this formula, combined with the ∆θ = 1/20 to compute the surface area of the Earth’s atmosphere
over which clouds are visible to us:

Sarea of our horizon = 2πR2[− cos(θ)]
1/20
0 = 2πR2

(
− cos

(
1

20

)
+ 1

)
= 2πR2

(
1− cos

(
1

20

))
= 2πR2

(
1−

(
1−

(
1

20

)2 1

2!

))
= πR2/400.
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From this we can compute what fraction of the Earth’s atmosphere we can see at a given location on Earth:

Sarea of our horizon

Esphere
=
π/400

4π
= 1/1600.

Notice the factors of R2 canceled out.
Let’s now use the assumed average fraction of the sky taken up by clouds from our perspective, of 15%. Let’s

assume the clouds are bunched up to take up 15% of our sky exactly. Then since our sky is only 1/1600 the total
sky, this means that this one “fake” cloud takes up an angular fraction of the Earth’s atmosphere of 15% of 1/1600,
or 15/100 × 1/1600 = 15/1600 × 1/100 ≈ 1/10, 000. So if we resolve one “cloud” by 3 points in each angular
direction (Nyquist sampled), we need 9 points per cloud. Multiply that by 1,600 such “clouds”, and we end up
with about 15,000 numerical points required to Nyquist sample the cloud cover on Earth. Generally we’d like to
resolve each feature in our solution by at least 10 points in each direction, so instead of 9 points, 102 = 100 points
per cloud would be far better. Also the clouds won’t clump up as we assumed, so if there are a total of 20 clouds
in the sky, we’ll need 20 times more points. So a better model would use 20 × 100 × 15, 000, or about 30 million
(3× 107) points.

4.4 Other Back-of-the-Envelope Estimation Examples

You should be able to estimate based on your existing knowledge alone, without the help of any
external sources, answers within an order of magnitude to the following questions.

Exercises:

1. What is the total number of miles driven in passenger vehicles each day within the United States? Based on
this, how much gasoline is consumed each day within the United States in gallons? (There are 1.6 km per mile,
and 3.8 liters per gallon.)

2. You are working as a digital artist and want to create a realistic 3D model of a healthy forest in the summer
time, but before starting the project you smartly decide to do some calculations to determine whether your
workstation might be overwhelmed by the task. To this end, you must first compute the number of leaves on a
typical large, healthy, leafy (deciduous) tree, to within an order of magnitude. Provide this estimate.

3. You would like to know how much faster your computer code will run in one year. Moore’s Law says that CPU
speed will double every 18 months. Use the Rule of 72 to compute by what factor CPU speed increases each
year, according to Moore’s Law. Your final answer must be correct up to and including the second significant
digit. Hint: Recall the Rule of 72 says that for a growth rate of x% per unit time, the amount of time necessary
for doubling be given by 72/x.

4. The Rule of 72 can also be used to estimate the time needed to remove half of some exponentially decaying
quantity. Given this, use the Rule of 72, along with the inflation rate of 3% per year to estimate the value of
a United States dollar 20 years and 100 from today. I.e., you are to assume that the dollar lowers in value 3%
each year.

5. To estimate the distance to an object, we often use parallax. Parallax distances depend on the use of small-angle
approximations, which in turn are based on Taylor series expansion of trigonometric functions. Use the Taylor
series of the sine function sin(x) about x0 = 0 to compute by hand sin(0.01) to four significant digits.
You may find the following useful:
Defining f (n)(x) to be the nth derivative of f(x), the Taylor series expansion of a function f(x) about a point
x = x0 is given by:

f(x) =

∞∑
n=0

f (n)(x0)(x− x0)n

n!
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Solutions:

1.AssumingeachdriverintheUSdrivesonaverage30milesperday,andoneoutofthreepeopleintheUSdrive
everyday(i.e.,one-thirdof3×10

8
people),wegetabout3×10

9
milesperday,withinanorderofmagnitudeorso.

At20milespergallonaveragefueleconomy,eachdriveronaverageconsumes1.5gallonsofgas.Thusweshould
expectroughly1.5×10

8
gallonsofgasperday.Officialfigureshere:https://tinyurl.com/oomagnitude1

2.Roughly10
6

leaves:https://tinyurl.com/oomagnitude2

3.Solution:

(72/x)years=1.5years

(72/x)years=(3/2)years

=⇒x=72∗2/3=48

Thuseachyear,CPUspeedwillincreaseby48%.

4.TheRuleof72saysthattheUSdollarwilldecreaseinvalueduetoinflationbyone-halfafter72/3=24years.
Thusafter20years,eachdollarwillbeabletopurchaseonlyabout$0.60worthofgoods,andafter100years,
eachdollarwillbeabletopurchaseonlyabout$1.00×

1
24≈$0.06worthofgoods.

5.TheTaylorseriesexpansionofsin(x)aboutx0=0is

sin(x)=x−
x
3

3!
+
x
5

5!
−...

Thereforesin(0.01)is

sin(0.01)=0.01−
10−6

6
+

10−10

120
−...

≈1×10−2−1.7×10−7+1×10−12−...
≈9.999×10−3
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MATH 521, Fall 2018 Notes

Prof. Zachariah B. Etienne

Chapter 5: Computational Cost and Computational Complexity

(Big-O Notation)

5.1 Computational Cost: Floating Point Operations (FLOPs)

Often, when solving mathematical problems on the computer for research problems, we must be careful not to
overwhelm the computational resources available to us. The exact amount of time needed to solve a problem will
depend on how many FLoating point OPerations (FLOPs) are required, and the number of FLOPs per second
(FLOPS) our computer can evaluate. Being able to count FLOPs in an algorithm enables us to reliably estimate
the computational cost, and provides us insights into how we might make our algorithms more computationally
efficient.

A single floating point operation (FLOP) can be defined as a variable assignment (=), multiplication (×),
addition (+), or subtraction (−). On modern CPUs, A single division (÷) typically requires between 3–5 FLOPs
(http://tinyurl.com/estimateFLOPS).

Applying this definition, for floating point numbers a, b, c, d, and F , the expression

F = a ∗ b− c ∗ d

requires a total of 4 FLOPs (one assignment, multiplication on a ∗ b, multiplication on c ∗ d, and subtraction of the
result).

As another example, for floating point numbers a, b, c, ..., h and G, the expression

G = −(a ∗ b− c ∗ d)/(e ∗ f + g ∗ h)

requires a total of 8 floating point operations to evaluate all but the division (one variable assignment, the overall
minus sign (-1*) is a multiplication, 3 in the numerator, and 3 in the denominator). The division could add between
3–5 FLOPs, yielding a total cost of between 11–13 FLOPs.

5.2 Common Subexpression Elimination (CSE)

Consider the following expression:

x = b * sin(2*a) + c / sin(2*a).

Computation of this expression requires one assignment, three multiplications, one division, two sin() function
calls, and one addition. Multiplications, additions, and subtractions typically require one FLOP on a modern-day
CPU, and divisions can require roughly 3–5 FLOPs each. Transcendental functions are far worse—each computation
of a sine or cosine can require about 20 FLOPs on a modern-day CPU.

Our goal in writing efficient codes should be to minimize the number of FLOPs in our mathematical expressions.
One way of doing this is to implement common subexpression elimination, or CSE for short.

Automatic CSE algorithms do exist. Generally they search for common patterns within expressions and declare
them as new variables, so they need not be computed again.

Consider the following simplification of the above expression:

tmp = sin(2*a)

x = b * tmp + c / tmp

For the cost of only one additional assignment, we potentially saved about 21 FLOPs by not computing sin(2*a)

twice. Special note: Compiled languages like C++ or FORTRAN sometimes implement decent automatic CSE
algorithms, so optimizing code by hand like this might not yield the expected performance gains, as the compiler
may attempt its own CSE.
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Words of caution

Since division on most modern-day computers is significantly more expensive than addition, multiplication, subtraction,
and variable assignment, when rearranging expressions to make your computer program run faster, be sure that
minimizing the number of divisions is a high priority!

Modern CPUs possess multiple memory caches, typically with lower-numbered memory caches being closer to the CPU
(e.g., memory in the L1 cache on Intel and AMD CPUs can be accessed far more quickly than L2 or L3 caches; i.e.,
accesses from L2 or L3 cache can waste up to hundreds of CPU cycles). When it comes to CPU cache, accessing memory
in higher-numbered caches takes far longer than in low-numbered caches. Sometimes this means that declaring large
numbers of temporary variables in a CSE optimization might overload the L1 cache, causing a significant slowdown.
Therefore one must be generally careful to consider CPU cache sizes. Note also that RAM (outside CPU cache) is
even more slowly accessed, and hard disk reading/writing can be slower than RAM by orders of magnitude.

Finally, most compiled languages like C, FORTRAN, or C++ will make use of (with suitable compiler options)
Single Instruction-Multiple Data CPU instructions (e.g., SSE2 or AVX instruction sets) when compiling mathematical
expressions. These instructions enable multiple additions, subtractions, multiplications, or fused-multiply-adds to be
performed each CPU clock cycle! As a result, you may find when using these languages that your code runs far faster
than you might otherwise expect. Writing codes with this—and the behavior of CPU caches—in mind can be very
powerful ammunition to optimizing your algorithms by orders of magnitude!

5.3 Computational Complexity (Big-O Notation)

Some algorithms are more efficient than others, and big-O notation can be used as a measure of an algorithm’s
efficiency.

Imagine we have a cluster of N stars. Suppose we wished to calculate the gravitational force F i on a given star
i. The force would be equal to

F i =
N∑
i 6=j

F i,j ,

where F i,j is simply the force on star i from some other star j. Clearly to calculate the gravitational pull on star
i, we need to add a total of N − 1 forces. In order to model the motions of all the stars in this star cluster, we
must compute F i for all N stars in the cluster. As you know, addition is an operation allowed by floating point
numbers, so to add up all the forces on this star cluster will require N(N − 1) = N2−N floating point operations.
Written in pseudocode, this translates to a nested loop:

do i=1,N

F[i]=0

do j=1,N

if(i not equal to j) F[i] = F[i] + F(i,j)

end do

end do

When you see nested loops, be careful: the number of nested loops adds directly to the exponent of the number
of operations. And the largest exponent is what typically goes into the Big-O notation. Basically, Big-O notation
is used to denote the computational complexity of a given algorithm, and we say that the algorithm just described
is an O(N2) operation.

Suppose we have chosen an algorithm that is O(N3) due to a nested loop. If we need to run the O(N3) loop in
this algorithm three times as well as a O(N2) loop once, many numerical analysis texts will write the computational
complexity as O(3N3 + N2). Unless we are comparing the complexity of two algorithms with the same exponent
on N (e.g., to find the most efficient algorithm) or are interested in the small-N limit, the constant coefficient on
N3 and the N2 term will rarely be useful.

Thus we typically choose to write an algorithm that has computational complexity O(3N3 + N2) as O(N3)
because Big-O notation is typically used to estimate how long it will take a given algorithm to run on our computer
if N (assumed � 1) is varied.
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In particular, the time T required for our computer to evaluate an O(N3) algorithm in the large-N limit will
be given by

T ∝ N3,

which can be written
T = aN3,

where a is a proportionality constant. a will not only depend on the fact that there are three loops, but also
the speed of our computer! Different computers have different intrinsic speeds, so assessing the computational
complexity of our algorithm will provide us an estimate of computational cost, modulo a proportionality constant
that accounts for the speed of our computer.

Question:

If an O(N2) algorithm requires 10 minutes to complete, how long will it take the algorithm to complete if N is doubled?
Assume N is large.

Answer:

ThecostintimeofanO(N
2
)algorithmwillgrowquadratically(asN

2
)withN.Wearegiventhana(N0)

2
=10

minutesforsomevalueN=N0,sotheproportionalityconstantis10minutes/(N0)
2
.Thereforeifwechoose

N1=2N0,thenthecostintimeisa(N1)
2

=a(2N0)
2

=4×a(N0)
2

=4×10minutes=40minutes.

Definition: An algorithm with computational complexity O(1) will complete in a time independent of some
size factor N . For example, the algorithm

x = N * 2 + 4

has computational complexity O(1), despite the fact that x depends on N, since as N increases, the computational
cost remains the same.

5.4 Example: More Efficient Algorithms May Exist!

Suppose we play the game “higher or lower”. In this game between two people – Person A and Person B, Person
A picks a secret number (an integer) between 0 and N , and Person B attempts to guess the secret number. After
each guess, Person A must say either “higher” or “lower” if the number Person B guessed is less than or greater
than the secret number, respectively.

One algorithm Person B might choose would be to start at 0 and guess 1, then 2, then 3, etc., while Person A
keeps saying “higher”, until Person B reaches the secret number. This algorithm for guessing the correct number
would be O(N), since Person B would need to make on average N/2 guesses before reaching the correct number.

If on the other hand, Person B chose N/2 as the first guess. For the second guess, if Person A said

• “higher”, then Person B would pick the closest number to 3N/4, or

• “lower”, then Person B would pick the closest number to 1N/4.

By continuing this pattern of bisecting the remaining interval on each guess, Person B would rule out fully half of
the remaining possible secret numbers at each guess. You will find that (exercise to student) if N = 4, Person B
would need at most 3 guesses. If N = 8, Person B would need at most 4 guesses. If N = 64, Person B would need
at most 7 guesses. Continuing the pattern, Person B would need at most 1 + log2N guesses for any N . Thus this
“bisection” algorithm for finding the secret number has computational complexity of O(log2N).

Now consider a very large N ... say N = 2100. Then the cost of the first algorithm would be of order 2100 ≈
1.3 × 1030 guesses, while the second algorithm would require only 101 guesses at most... a savings of about 28
orders of magnitude.

Therefore as a general tip, it is very important to seek out algorithms with lower computational complexity in
the large-N limit if they exist — this tip might save you years of waiting in your research!
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5.5 Big-O Notation, and Computational Cost Exercises

Exercises:

First write the computational complexity of each of the following algorithms, and then evaluate the total computational
cost in FLOPs if N = 10. Use Big-O notation for computational complexity and assume variable assignments,
multiplications, additions, subtractions, and divisions all require a single floating point operation.

1. x = 2*N*N*N - 4*N*N + 5*N + 3

2. do i=1,N

F[i]=0

end do

do i=1,N

do j=1,N

F[i] = F[i] + j

end do

end do

3. do i=1,N*N

F[i]=0

do j=1,N*N

F[i] = F[i] + i*0.3 + j*0.1

end do

end do

4. do i=1,N*N*N

F[i]=i+2

end do

do i=1,N

do j=1,N*N

F[i] = F[i] + j

end do

end do

Solutions:

1.O(1).Therearenoloops,andonlyasingleexpressiontoevaluate.Theexpressionitself,x=2∗N∗N∗N−4∗
N∗N+5∗N+3,requires10FLOPstocompute:6multiplications,onesubtraction,twoadditions,andone
assignment.

2.ThesecondloopisanO(N
2
)operation.FLOPsforN=10:eachinnermostlooprequires2FLOPsperiteration,

soweget2×10
2

FLOPsfortheinnermostloop.Addthistothefirstloopof10FLOPs,andweget210FLOPs.

3.O(N
4
),becausetherearetwonestedN

2
loops.FLOPsforN=10:eachinnermostloopiterationrequires5

FLOPs,soatotalof5N
4

=5×10
4

FLOPsareneededfortheinnermostloop.AddthistotheN
2

assignments
neededtoinitializeF[i]=0,andweget50,100FLOPs.

4.O(N
3
);boththedoi=1,N*N*Nanddoi=1,N;doj=1,N*Nloopshavethiscomputationalcomplexity.FLOPs

forN=10:Allloopsrequire2FLOPsperiteration,andthereare10
3

evaluationsperloop.Thereforewefind
thealgorithmrequires4,000FLOPs.
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Chapter 6: Solving Square Matrix Equations on the Computer

In numerical analysis, we are often required to solve the matrix equation

Ax = b,

where A is a square matrix, b is a known vector, and x is the unknown vector representing our solution. How do
we solve for x?

6.1 Gaussian Elimination

Gaussian Elimination is typically the strategy we are first taught in linear algebra to solve sets of linear equations.
Consider the following set of equations:

5x1 − 2x2 + x3 = −2

4x1 − 4x2 + 3x3 = 1

x1 + x2 − x3 = −1

We first rewrite these in the form Ax = b as follows:

Ax =

 5 −2 1
4 −4 3
1 1 −1

 x1

x2

x3

 =

 −2
1
−1

 = b

When performing Gaussian elimination we first write the augmented matrix corresponding to this linear
system of equations:  5 −2 1 −2

4 −4 3 1
1 1 −1 −1

 .
Recall the goal now is to transform this matrix into echelon or upper-triangle form, where all elements below

the diagonal are zero. The trick is to notice that the linear set of equations remain unchanged if

1. any row is multiplied by any nonzero, non-infinite constant,

2. rows are interchanged, or

3. any two rows can be added together, with the result replacing one of the rows.

By careful application of these rules, we can “zero-out” all elements below the diagonal, accomplishing our goal of
rewriting the matrix in upper triangle form.

We know how to do this process by hand, but how can we teach a computer to do it? This is a question at the
core of numerical analysis. Typically when solving the linear system of equations by hand, we try to avoid fractions
in favor of integers.

For example, suppose we wish to zero-out the first column of the second row. We could start by multiplying
the top row by −4 and then adding it to 5 times the second row, then replacing row 2 with the result.

In shorthand, −4R1 + 5R2 → R2: 5 −2 1 −2
−20 + 20 8− 20 −4 + 15 8 + 5

1 1 −1 −1

 =

 5 −2 1 −2
0 −12 11 13
1 1 −1 −1


Our computer is capable of performing floating-point arithmetic to many significant digits, and teaching our

computer to perform only integer arithmetic in these cases would greatly complicate our algorithm for Gaussian
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elimination. In addition, the fact that we are dealing with an integer matrix is very artificial; normally the matrix
elements will be populated by finite precision, floating point numbers.

So to zero-out the first column of the second row in a more automatic way, let’s simply multiply the first column
by −4

5 , add the result to the second row, and then replace the second row.
In shorthand notation we have, −4

5R1 +R2 → R2: 5 −2 1 −2
5×−4

5 + 4 −2×−4
5 − 4 1×−4

5 + 3 −2×−4
5 + 1

1 1 −1 −1

 =

 5 −2 1 −2
0 −12

5
11
5

13
5

1 1 −1 −1


Next we zero out the lower-left component of the matrix with the same approach. To accomplish this, multiply

the first row by −1
5 , add it to the third row, and replace the third row. In shorthand notation: −1

5R1 +R3 → R3.
Analyzing our approach for zeroing-out the element in row i of the first column, we see the following pattern:

−ciR1 +Ri → Ri, where ci =
row i, column 1

row 1, column 1
. (6.1)

When constructing an algorithm for the computer, it is critically important to standardize and simplify no-
tation whenever possible; ambiguous or overcomplicated notation can make our jobs extremely difficult. So let’s
standardize and simplify the notation:

Notation:

For a matrix A, ai,j will henceforth refer to the element
at the ith row and the jth column.

Any 3× 4 augmented matrix can be written in this notation as:

A =

 a1,1 a1,2 a1,3 a1,4

a2,1 a2,2 a2,3 a2,4

a3,1 a3,2 a3,3 a3,4


With this notation, we can more compactly write the steps necessary for zeroing-out all elements in the first

column (ai,1) below the first row (i > 1): Multiply the entire row 1 (R1) by −ai,1/a1,1, add the result to row i (Ri),
and replace row i (Ri) with the result. In short-hand notation:

− ai,1
a1,1

R1 +Ri → Ri. (6.2)

Note that each row in the augmented matrix has a total of N + 1 columns. This means that zeroing out
each element in the matrix possesses O(N) complexity. Defining the 2-dimensional array a[i][j]=ai,j , we might
implement Eq. (6.2) to zero out the element a[i][1] for some row i is as follows (Warning: There is a serious
bug in this algorithm. See Exercise below):

do j=1,N+1

a[i][j] = -a[i][1]/a[1][1] * a[1][j] + a[i][j]

end do

Exercise:

Find the serious bug in the above “zeroing-out the element a[i][1] for some row i” algorithm. Hint:
Add a print i,j,a[i][j] before the end do and carefully analyze what the output will be.
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Solution:

Afterthefirstiterationoftheinnerloop,a[i][1]hasbeensettozero.Asaresult,forj>1,a[i][1]/a[1][1]=0,
meaningthattherescalinginformationci(Eq.6.1)islostafterthefirstcolumnoftherow.Tofixthis,westoreci
beforelaunchingintothejloop:

c_i=a[i][1]/a[1][1]

doj=1,N+1

a[i][j]=-c_i*a[1][j]+a[i][j]

enddo

Thismightbecalledadata-dependencybug,inthatthebuggyversionmodifiesdatathattermsj>1assumeare
unchanged.

Based on the Exercise above, the bug-fixed algorithm for zeroing out the first column in the ith row is given by

c_i = a[i][1]/a[1][1]

do j=1,N+1

a[i][j] = -c_i * a[1][j] + a[i][j]

end do

To fill in all rows i > 1 in this way requires that we repeat the above bug-fixed loop for all other rows:

do i=2,N

c_i = a[i][1]/a[1][1]

do j=1,N+1

a[i][j] = -c_i * a[1][j] + a[i][j]

end do

end do

This algorithm will zero-out all elements in the first column below the first row of the matrix. However, we
need to zero-out elements below the diagonal in all columns to get the matrix in echelon (upper-triangle) form!

Once we have zeroed-out all elements below the diagonal in the first column, we can then focus on the second
column:

do i=3,N

c_i = a[i][2]/a[2][2]

do j=2,N+1

a[i][j] = -c_i * a[2][j] + a[i][j]

end do

end do

Noticing the pattern, we can write the entire algorithm for decomposing the matrix into an upper-triangle
(echelon form) matrix using Gaussian elimination as follows:

do k=1,N-1

do i=k+1,N

c_i = a[i][k]/a[k][k]

do j=k,N+1

a[i][j] = -c_i * a[k][j] + a[i][j]

end do

end do

end do

This algorithm will output the following echelon or upper-triangle form of A|b, to double precision: 5 −2 1 −2
0 −12/5 11/5 13/5
0 0 1/12 11/12

 (6.3)
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With the matrix in echelon form, x1, x2, and x3 can be solved by back substitution. Let’s work out the
algorithm. The last row implies that

1

12
x3 =

11

12
=⇒ x3 = 11.

In general the last row can be written in the form

aN,NxN = aN,N+1

=⇒ xN = aN,N+1/aN,N .

The second row then gives us

−12

5
x2 +

11

5
x3(= 11) =

13

5
=⇒ −12x2 = 13− 121 = −108 =⇒ x2 =

108

12
=

54

6
= 9.

The general form of the second-to-last row is

aN−1,N−1xN−1 + aN−1,NxN = aN−1,N+1

=⇒ xN−1 =
aN−1,N+1 − aN−1,NxN

aN−1,N−1
,

where all the terms on the right-hand side are known.
Then we apply back substitution on the first row:

5x1 − 2x2(= 9) + x3(= 11) = −2 =⇒ 5x1 = 2 ∗ 9− 11− 2 = 18− 13 = 5 =⇒ x1 = 1.

The general form of the third-to-last row is

aN−2,N−2xN−2 + aN−2,N−1xN−1 + aN−2,NxN = aN−2,N+1

=⇒ xN−2 =
aN−2,N+1 − aN−2,N−1xN−1 − aN−2,NxN

aN−2,N−2
.

Looking at the general forms of these expressions, we see that in the process of back-substitution, xi will depend
on xN , xN−1, ..., xi−1, as well as the matrix elements ai,i, ai,i+1, ..., ai,N , ai,N+1.

Upon careful examination, we find that the expression for an arbitrary xi in the process of back substitution
will be given by

xi =
ai,N+1 −

∑N
j=i+1 ai,jxj

ai,i
,

where all xjs on the right-hand side of this equation have already been computed. Note that for i = N , the sum
becomes a sum from N + 1 to N—no elements of the sum are computed, and the expression is consistent with the
xN expression above.

In pseudo-code, the back substitution algorithm takes the form

do i=N,1,-1 # Loop from N to 1 inclusive in increments of -1 (opposite normal loop order)

x[i] = a[i][N+1]/a[i][i]

do j=i+1,N

x[i] = x[i] - a[i][j]*x[j]/a[i][i]

end do

end do
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Here is a summary of the Gaussian Elimination algorithm we have devised:

Summary: Simple Gaussian Elimination Algorithm

Warning: This algorithm is not very robust. See next section for details!

do k=1,N-1

do i=k+1,N

c_i = a[i][k]/a[k][k]

do j=k,N+1

a[i][j] = -c_i * a[k][j] + a[i][j]

end do

end do

end do

do i=N,1,-1 # Loop from N to 1 inclusive in increments of -1 (opposite normal loop order)

x[i] = a[i][N+1]/a[i][i]

do j=i+1,N

x[i] = x[i] - a[i][j]*x[j]/a[i][i]

end do

end do

Exercises:

1. What is the computational complexity of the Gaussian elimination algorithm (including back substitution)?

2. What is the computational complexity of the back substitution algorithm?

3. Write the pseudocode for computing AB, where A and B are N × N matrices. Store the result in matrix
C = AB. What is the computational complexity? If our computer can multiply two 100 × 100 matrices in 1
second, how long can we expect it will need to multiply two 1, 000× 1, 000 matrices? (Ignore cache effects.)

Solutions:

1.O(N
3
)

2.O(N
2
)—farlessexpensivethangeneratingtheuppertrianglematrix!

3.ThecomputationalcomplexityofmultiplicationoftwoN×NmatricesisO(N
3
).Ifourcomputercanmultiply

two100
2

matricesin1second,itwillthereforeneed(1,000/100)
3

secondstomultiplytwo1,000
2

matrices,or
1,000seconds.

doi=1,N

doj=1,N

sum=0

dok=1,N

sum=sum+a[i][k]*b[k][j]

enddo

c[i][j]=sum

enddo

enddo

6.1.1 Toward a More Robust Gaussian Elimination Algorithm

In this section, we will explore cases in which the Gaussian elimination algorithm we have devised will fail, and
work to make our algorithm more robust.

6.1.1.1 Zeroes Appearing along the Diagonal of A during Gaussian Elimination

Take a look at the line of code from our Gaussian elimination algorithm:

c_i = a[i][k]/a[k][k]

Notice that the algorithm will fail if a[k][k]=0. That is to say, if a zero appears along a diagonal of our matrix
A, then the algorithm will divide by zero, yielding NaNs (Not A Number) for our solution vector x.
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Consider the following set of linear equations:

A|b =

 0 −12 11 13
5 −2 1 −2
0 0 1 11


Notice that this is equivalent to

−12x2 + 11x3 = 13

5x1 − 2x2 + x3 = −2

x3 = 11,

which is precisely the same system of equations we found in the previous section (Eq. 6.3), just before back-
substitution – all we did here was interchange the top two equations. We know the solution is x1 = 1, x2 = 9,
and x3 = 11, but if we were to plug this system of equations into our Gaussian elimination algorithm, it would fail
because the upper-left diagonal component is zero, resulting in a division by zero in c_i when k=1 and i=1.

If we flip the top two rows again, we get:  5 −2 1 −2
0 −12 11 13
0 0 1 11

 ,
which does not contain a zero along the diagonal, and our standard Gaussian elimination algorithm will effectively
do nothing until back-substitution, since the matrix is already in upper-triangle (i.e., echelon) form.

Definition: Flipping rows in this way is called zero-avoidance pivoting.
Let us now modify our Gaussian elimination algorithm to incorporate this simple zero-avoidance pivoting to

avoid failures:

do k=1,N-1

if(a[k][k] is 0)

(flip row k with the next row down that does not have a zero in column k)

end if

do i=k+1,N

c_i = a[i][k]/a[k][k]

do j=k,N+1

a[i][j] = -c_i * a[k][j] + a[i][j]

end do

end do

end do

6.1.1.2 Addressing Roundoff Error Issues with Partial Pivoting

Even after installing the above zero-avoiding pivot algorithm, our Gaussian elimination algorithm can still fail.
Consider the following system of equations:

Ax = b =

[
10−20 1

1 1

] [
x1

x2

]
=

[
1
0

]
.

The exact solution to this equation is

x1 = − 1

1− 10−20

x2 =
1

1− 10−20
.

So in double precision, we might expect to get the answers ±1, which are consistent with the exact results to about
19 significant digits. But this is not the case when using our Gaussian elimination algorithm!
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Our Gaussian elimination algorithm will multiply the first row by −1020, add the result to the bottom row, and
replace the bottom row with this result. In shorthand notation: −1020R1 +R2 → R2:[

10−20 1 1
0 −1020 + 1 −1020

]
Notice the loss of significance in the bottom row: −1020 + 1 = −1020 in double precision. So to double precision,
the augmented matrix in echelon (upper-triangle) form is written[

10−20 1 1
0 −1020 −1020

]
Next the algorithm will solve for x using back substitution:

x2 = a23/a22 = (−1020)/(−1020) = 1

x1 = a13/a11 − x2(a12/a11) = 1/10−20 − 1(1/10−20) = 1020 − 1020 = 0

We conclude that back-substitution in double precision yields x2 = 1, which is consistent with the exact result to
about 19 significant digits. However, it also finds x1 = 0, which is not even close to the correct answer! What
happened here?

Recall our discussions of machine epsilon. It turns out that any |x1| . 104 will satisfy the equation 10−20x1+1 =
1 in double precision, since machine epsilon is εm ∼ 10−16 in double precision. Notice that the correct value x1 = −1
is in this inequality, but because the U matrix involves an equation that multiplies x1 by a number 20 orders of
magnitude smaller in magnitude than x2, we have observed a catastrophic cancellation.

Definitions: To combat this loss of significance, we simply adjust our zero-pivoting algorithm to, instead of
avoiding zeroes along the diagonal, to instead maximize the magnitude of the elements along the diagonal. This
strategy is called partial or row pivoting. Usually partial pivoting is enough to minimize roundoff errors, but
sometimes complete pivoting is necessary. Complete pivoting flips both columns and rows to maximize the
diagonal elements. Note that unlike row pivoting, column pivoting changes the ordering of the components of the
solution vector x, which requires that one keep track of the order of the columns, usually by use of a permutation
matrix P . The permutation matrix is the identity matrix I, but with the columns flipped consistent to the
reordered solution vector x. In this way, Px is the reordered solution vector.

The partial pivoting algorithm is as follows:

• As column j of the upper triangle (echelon) form of the matrix is computed, first find the largest magnitude
element in this column at or below the main diagonal.

• Interchange that element’s row with row j.

in pseudocode, the Gaussian elimination algorithm with partial pivoting is given by:

do k=1,N

row_of_maximum_element = k

do i=k+1,N

if(|a[i][k]| > |a[row_of_maximum_element][k]|) then

row_of_maximum_element = i

end if

end do

(flip k and row_of_maximum_element rows)

do i=k+1,N

c_i = a[i][k]/a[k][k]

do j=1,N+1

a[i][j] = -c_i * a[k][j] + a[i][j]

end do

end do

end do
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Note that partial pivoting not only acts to minimize roundoff error, but also replaces zero elements along the
diagonal. Thus Gaussian elimination with partial pivoting is superior to the original zero-avoiding pivot algorithm
described above.

Let’s apply partial pivoting strategy to our simple example:

A|b =

[
10−20 1 1

1 1 0

]
Partial pivoting first scans the first column for the row with the largest magnitude element in this column.

Once it finds this element, it flips the rows. Clearly |1| > |10−20|, so we must flip rows:[
1 1 0

10−20 1 1

]
Gaussian elimination then proceeds using our algorithm via −10−20R1 +R2 → R2:[

1 1 0
0 1− 10−20 1− 10−20

]
=

[
1 1 0
0 1 1

]
Back substitution yields

x2 = a23/a22 = 1/1 = 1

x1 = a13/a11 − x2(a12/a11) = 0/1− 1(1/1) = −1,

which is consistent with the exact solution to about 19 significant digits!

6.1.1.3 When Partial Pivoting Fails: Rescale maximum element in each row to unit magnitude

Consider the same example as in the previous section, except with the top row multiplied by 1020:

A|b =

[
1 1020 1020

1 1 0

]
.

In this case, our row/partial pivoting strategy will be ineffective, because the elements in the first column under
the upper-left diagonal are equal. The result will again be x1 = 0 and x2 = 1. To fix this, we only need to multiply
each row by the inverse of the largest magnitude element, prior to partial pivoting. This will have computational
complexity of O(N2)—again a small fraction of the total cost of Gaussian elimination in the large-N limit. An
alternative to this approach is to apply a scaled pivoting algorithm, whereby rows are flipped based on their
largest magnitude. This will have computational complexity of O(N2) as well because all elements of the matrix
must be analyzed.

6.1.1.4 No Solution

Sometimes we might encounter a case in which there exists zero or infinitely many solutions to Ax = b. This will
happen if and only if det(A) = 0. In this case, a solution x obtained through Gaussian elimination is guaranteed to
fail. To prevent this from happening, one could compute the determinant of A, but this is also a O(N3) operation
using standard approach (cofactor, or “Laplace” expansion)! So if our output contains NaNs, then and only then
do we check for a zero determinant.
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6.1.1.5 Summary: A Robust Gaussian Elimination Algorithm

Caution: There are examples of matrices for which complete pivoting is necessary to guarantee a solution.

Summary: Gaussian Elimination Algorithm with Partial Pivoting and det(A) = 0 Checking

do i=1,N

# First normalize maximum magnitude in each row to 1

max_magnitude_in_row_i = 0

do j=1,N+1

if(|a[i][j]| > max_magnitude_in_row_i)

max_magnitude_in_row_i = |a[i][j]|

end if

end do

do j=1,N+1

a[i][j] = a[i][j] / max_magnitude_in_row_i

end do

end do

do k=1,N

# Partial pivoting algorithm:

row_of_maximum_element = k

do i=k+1,N

if(|a[i][k]| > |a[row_of_maximum_element][k]|) then

row_of_maximum_element = i

end if

end do

(flip k and row_of_maximum_element rows)

# Algorithm for computing upper-triangle form of A|b

do i=k+1,N

c_i = a[i][k]/a[k][k]

do j=1,N+1

a[i][j] = -c_i * a[k][j] + a[i][j]

end do

end do

end do

# Back-substitution algorithm:

do i=N,1,-1 # Loop from N to 1 inclusive in increments of -1 (opposite normal loop order)

x[i] = a[i][N+1]/a[i][i]

do j=i+1,N

x[i] = x[i] - a[i][j]*x[j]/a[i][i]

end do

end do

# Check for NaNs in solution vector. If found, print appropriate error message.

do i=1,N

if(x[i] == NaN) then

detA = (determinant of matrix A)

if(detA == 0) then

print("Error: Matrix A is singular. No solution can be found.")

else

print("Error: Matrix A is non-singular, yet no solution found.")

print(" You may have chosen a matrix that requires complete pivoting")

end if

end if

end do
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6.2 The LU Decomposition

Suppose we have M matrix equations to solve, which follow the pattern

Axi = bi,

where i ∈ [1,M ]. We could in principle apply the Gaussian Elimination algorithm we just derived to this equation
M times to find all M solutions for xi, but this would be an O(MN3) operation, and M could be very large.

Definition: When a matrix A can be written as a product of simpler matrices, we call it a decomposition
of A, so since A = LU we call this the approach the LU decomposition of A.

The LU decomposition decomposes A into a lower-triangle matrix L times an upper-triangular matrix U , so
that A = LU . U is constructed via Gaussian elimination on A, and L stores the information that encodes the
Gaussian elimination, as we will soon see.

Once we have A = LU , then

bi = Axi

= LUxi

= L(Uxi)

Define
yi = Uxi.

Notice that both yi and xi are unknowns. The original equation can then be written in terms of yi as follows:

bi = Axi

= LUxi

= L(Uxi)

= Lyi.

So once we have decomposed A into L and U via Gaussian elimination (an O(N3) operation), we can then
compute yi via simple back substitution (an O(N2) operation), and then xi via back substitution as well (again,
an O(N2) operation).

This makes the LU decomposition quite useful for many engineering/scientific applications in which A stays
fixed, while we must solve for many different bi. So if we have M different bi’s, then the LU decomposition can
be leveraged to lower the total cost of this operation to a computatinoal complexity O(N3) +O(MN2). Compare
this to the complexity for Gaussian elimination: O(MN3)—an enormous cost savings when M is large!

6.2.1 Worked Example of LU Decomposition

Now I will go over the strategy for generating the L and U matrices, starting with the following 3× 3 matrix:

A =

 1 −2 4
2 −6 10
1 2 −1


The idea is, L and U encode all the information necessary to perform a Gaussian elimination solution of Ax = b.

This will be most obvious as we build the L matrix. We start by writing L as follows:

L =

 1 0 0
− 1 0
− − 1

 ,
where the dashes indicate empty matrix elements that will be filled in with the Gaussian elimination information
necessary to construct the upper-triangle matrix U .
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We now proceed with our Gaussian elimination on A: −2R1 +R2 → R2

A1 =

 1 −2 4
0 −2 2
1 2 −1


The idea is, we record this Gaussian elimination step by inserting the opposite of the multiplication factor we

used to get rid of a2,1, to the l2,1 element of our matrix L. The multiplication factor was −2, so we insert a +2 at
element l2,1 in the L matrix:

L =

 1 0 0
2 1 0
− − 1

 ,
We continue by zeroing the first column in the next row via −R1 + R3 → R3, and record the result in the

lower-left corner of the L matrix:

A2 =

 1 −2 4
0 −2 2
0 4 −5

 , L =

 1 0 0
2 1 0
1 − 1

 ,
Next, to eliminate the 4 in the bottom row, we apply 2R2 +R3 → R3. This completes not only our U matrix,

but also our L matrix as well:

A3 = U =

 1 −2 4
0 −2 2
0 0 −1

 , L =

 1 0 0
2 1 0
1 −2 1


We can confirm that A = LU :

LU =

 1 0 0
2 1 0
1 −2 1

 1 −2 4
0 −2 2
0 0 −1

 = A =

 1 −2 4
2 −6 10
1 2 −1


Let us now apply the LU decomposition technique to solve for x. Recall that our first step is to define y = Ux,

so that
Ax = LUx = L(Ux) = Ly = b.

Then we use back-substitution to quickly solve for y. Let us suppose we have bT = (1, 2, 4). Then

Ly =

 1 0 0
2 1 0
1 −2 1

 y1

y2

y3

 =

 1
2
4

 .
Then clearly, y1 = 1, 2y1 + y2 = 2 =⇒ y2 = 0, and y1 − 2y2 + y3 = 1 + y3 = 4 =⇒ y3 = 3.

Next we use the relation

Ux = y =

 1 −2 4
0 −2 2
0 0 −1

 x1

x2

x3

 =

 1
0
3

 .
Thus we immediately get x3 = −3, −2x2 + 2x3 = −2x2− 6 = 0 =⇒ x2 = −3, and x1− 2x2 + 4x3 = x1 + 6− 12 =
1 =⇒ x1 = 7.

Again, the power of the LU decomposition is that if we needed the solution x from Ax = b now for a different
b, we could apply the LU decomposition of A we have already computed, along with some trivial back-substitution
to get the new x.
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MATH 521, Fall 2018 Notes

Prof. Zachariah B. Etienne

Chapter 7: Function Approximation (Approximation Theory)

At their lowest levels, computers are generally capable of only multiplication, division, addition, and subtraction.
If f(x) is a low-order polynomial, this becomes an easy task, since polynomial functions may be evaluated at a
given point using these operations alone. However, how are we to evaluate transcendental functions, like cos(x)?
Addressing this question is at the heart of Approximation Theory.

7.1 Taylor Series

The Taylor series should be our first approach for function approximation if the function is smooth and differentiable,
and we only need to compute f(x) over a limited range of x near a point x0.

Definition: Defining f (n)(x) to be the nth derivative of f(x), the Taylor series expansion of a function f(x)
about a point x = x0 is given by:

f(x) =
∞∑
n=0

f (n)(x0)(x− x0)n

n!
.

Definition: Taylor series expansions are a type of power series representation of a function f(x), where a
power series satisfies the pattern:

f(x) =
∞∑
n=0

an(x− x0)n.

Of course in the case of a Taylor series, the power series coefficient an satisfies an = f (n)(x0)
n! .

As we will find in Example #1 below, Taylor series can be used for evaluating a function at discrete points
where it is smooth (i.e., multiple-times differentiable).

Example #1:

Evaluate f(x) = cos(x) at x = 0.01 via a Taylor series expansion about a neighboring point x0 where f(x) and its
derivatives can be computed easily by hand.

Taylor series require that we evaluate derivatives of f(x) at a point x0. Let’s take a cue from the problem
statement and evaluate cos(x) at a nearby point that is easily evaluated by hand, say x0 = 0. There are an infinite
number of derivatives in the sum, so instead of spending our entire finite lives writing them out, let’s instead find
a pattern that these derivatives follow, so we can devise an algorithm for evaluating the Taylor series of cos(x) at
x = 0.01, about x0 = 0.

Note first that the zeroth derivative is defined as the function itself (i.e., taking the derivative of the function
zero times). Thus

f (0)(0) = cos(0) = 1

f (1)(0) = f ′(0) = − sin(0) = 0

f (2)(0) = − cos(0) = −1

f (3)(0) = sin(0) = 0

f (4)(0) = cos(0) = 1

...
...

f (n)(0) =

{
0 if n odd

(−1)n/2 if n even.
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Based on this, we can immediately write an expression for computing the Taylor expansion of f(x) = cos(x)
about x0 = 0:

cos(x) = 1− x2

2!
+
x4

4!
− x6

6!
+ . . .

Let’s now evaluate cos(x = 0.01) using this expansion:

cos(0.01) = 1− 10−4

2!
+

10−8

4!
− 10−12

6!
− . . .

Notice that this evaluation of the transcendental function cos(x) at x = 0.01 requires only addition, multiplication,
division, and subtraction, meaning that we have discovered an algorithm to evaluate cos(0.01) on the computer!

Exercise #1

How many terms do we need to include in this Taylor series expansion to guarantee double precision accuracy of
cos(0.01)?

Solution

TheTaylorseriesexpansionyielded

cos(0.01)=1−
10−4

2!
+

10−8

4!
−

10−12

6!
−...

Thefirsttermis1,thesecondtermadjuststhe4thsignificantdigitof1,thethirdtermadjuststhe9thsignificant

digit(since
10−8

4!∼10−9),andthefourthtermadjuststhe14thsignificantdigit(since
10−12

6!∼10−14).Thefifthterm,
10−16/8!wouldadjustanumberfarbelowmachineepsilonindoubleprecision.Thusfourtermsintheexpansionare
necessarytoguaranteedoubleprecisionaccuracyoftheTaylorseriesexpansion.

We have found that transcendental functions can be evaluated on the computer to double precision using a
Taylor series that requires the sum of only a few terms. Let’s take a look at another transcendental function:

Example #2:

Evaluate ln(x) at x = 10 via Taylor expansion about x0 = e.

As before, we start by computing the derivatives of
ln(x) evaluated at x0 = e:

f (0)(e) = ln(e) = 1

f (1)(e) = 1/e

f (2)(e) = −1/e2

f (3)(e) = 2/e3

f (4)(e) = −3!/e4

f (5)(e) = 4!/e5

f (6)(e) = −5!/e6

f (7)(e) = 6!/e7

...
...

f (n)(e) =

{
1 if n = 0

(−1)n−1(n− 1)!/en if n > 0.

Thus the general expression for the Taylor series of
f(x) = ln(x) about x0 = e may be written:

f(x) = ln(x) = 1 +
∞∑
n=1

(x− e)n(−1)n−1(n− 1)!

n!en

= 1 +

∞∑
n=1

(x− e)n(−1)n(−1)−1

nen

= 1−
∞∑
n=1

(e− x)n

nen

f(10) = ln(10) = 1−
∞∑
n=1

(e− 10)n

nen

= 1 + 2.68− 3.59 + 6.41

−12.9 + 27.6− 61.6 + 141 . . .

With the above pattern we can program a computer to evaluate the Taylor series sum to a finite number of
terms N as N is increased. Define the Taylor series sum to a finite number of terms N to be fTS(x,N). Then our
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computer program computing the terms in the Taylor series will yield the following results:

fTS(x = 10, N = 10) ≡ 1−
10∑
n=1

(e− 10)n

nen
≈ -1.344e3

fTS(x = 10, N = 20) ≡ 1−
20∑
n=1

(e− 10)n

nen
≈ -1.3e7

fTS(x = 10, N = 30) ≡ 1−
30∑
n=1

(e− 10)n

nen
≈ -1.7e11.

It does not look like the series is converging to the exact value of ln(10) ≈ 2.302 at all. We will soon prove that
this is a divergent series.

7.2 Series Convergence

Recall that a Taylor series is just one particular example of a power series. Now consider the finite series

fS(x,N) =

N∑
n=0

bn(x)

Definition: We say a series converges at a point x if the limit limN→∞ fS(x,N) exists and is finite for that
x. Otherwise, we say the series diverges.

Definition: In general the Taylor series

f(x) =

∞∑
n=0

an(x− x0)n =

∞∑
n=0

f (n)(x0)

n!
(x− x0)n

may only be used to approximate a function f(x) within a limited range of |x − x0| < ρ, where ρ is called the
radius of convergence.

Definition: We can sometimes compute the radius of convergence using the Ratio Test. For the power series

f(x) =
∞∑
n=0

an(x− x0)n,

define
bn(x) = an(x− x0)n.

Choosing bn 6= 0, bn+1 6= 0, and fixing x, compute the limit:

lim
n→∞

∣∣∣∣bn+1

bn

∣∣∣∣ = L.

• If L < 1 =⇒ series converges absolutely.

• If L > 1 =⇒ series diverges.

• If limit does not exist or L = 1 =⇒ test inconclusive.

Example #3:

Apply the Ratio Test to determine whether the Taylor expansion of ln(x) about x0 = e is in fact a divergent series at
x = 10.

Recall that we computed the general Taylor series of ln(x) about x = e to be

ln(x) = 1−
∞∑
n=1

(e− x)n

nen
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Let’s subtract 1 from both sides of the equation first. This will have no effect on the divergence or convergence of
the sum.

Then the Ratio Test gives:

lim
n→∞

∣∣∣∣ (e− x)n+1nen

(e− x)n(n+ 1)en+1

∣∣∣∣ = |e− x| lim
n→∞

n

(n+ 1)e
= |e− x|/e = L. =⇒ |e− x| = |x− e| = eL.

L < 1 for absolute convergence, so |x− e|/e < 1 for convergence and the radius of convergence is e. Thus we can
only expect the Taylor series to converge if |e− x| < e. I.e., convergence will be guaranteed if 0 < x < 2e ≈ 5.44.
We were trying to compute ln(x) at x = 10, which is far outside this inequality. Thus according to the Ratio Test,
the Taylor series of ln(x) about x0 = e will be divergent at x = 10, consistent with what we found as we increased
the number of terms in the sum.

Therefore, we must be careful when evaluating functions according to their Taylor series, as Taylor series in
general will have a limited radius of convergence.

Example #4:

Compute the radius of convergence for the Taylor series expansion of f(x) = cos(x) about x0 = 0 (see Example #1).

Recall that this Taylor series appeared to converge for x = 0.01, but can we prove that it is convergence with
the Ratio Test?

Recall that cos(x) about x0 = 0 is

cos(x) = 1− x2

2!
+
x4

4!
− . . .

=
∑
n even

(−1)n/2
xn

n!

=

∞∑
n=0

bn, where bn =

{
0 if n is odd, and

(−1)n/2 x
n

n! if n is even.

The final expression is inconsistent with the Ratio Test’s requirement that bn and bn+1 be nonzero. So to be able
to use the Ratio Test, we rewrite the series into the following form instead:

cos(x) =

∞∑
n=0

(−1)n
x2n

(2n)!

Then the Ratio Test yields

lim
n→∞

∣∣∣∣∣ (x)2(n+1)(2n)!

(x)2n(2(n+ 1))!

∣∣∣∣∣ = lim
n→∞

∣∣∣∣∣ (x)2(n+1)(2n)!

(x)2n(2n+ 2)(2n+ 1)(2n)!

∣∣∣∣∣ = lim
n→∞

x2

∣∣∣∣ 1

(2n+ 2)(2n+ 1)

∣∣∣∣ = 0 < 1

The limit evaluates to a number less than one, so we conclude that the radius of convergence is infinite, so the
series is guaranteed to converge for all real x!

7.3 Rate of Convergence

In addition to concerns about the radius of convergence, we must also be careful about series that are extremely
slow to converge. You will recall that when we expanded cos(x) about x0 = 0 to compute cos(0.01), our series
converged quite rapidly:

cos(0.01) = 1− 10−4

2!
+

10−8

4!
− 10−12

6!
+

10−16

8!
− . . .

I.e., with just four terms, we obtained a result consistent with the exact value to double precision (Exercise #1).
Let’s take a look at the same expansion to compute cos(1):

cos(1) = 1− 1

2!
+

1

4!
− 1

6!
+

1

8!
− . . .+ (−1)n/2

n!
(n even)
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It turns out that we will need to compute the first eight nonzero terms to achieve double precision (i.e., an error
less than 1 part in 1e16). Notice that this is twice the number of terms needed to compute x = 0.01.

Finally, let’s apply the same Taylor expansion to evaluate cos(1000):

cos(1000) = 1− 106

2!
+

1012

4!
− 1018

6!
+

1024

8!
− . . .

Notice the numerators are absolutely enormous. The Ratio Test guarantees that the series will be convergent, but

1. convergence will require possibly millions of terms,

2. the terms in the series will, within a small number of terms, reach the overflow limits of double precision, and

3. significant digits will be lost extremely rapidly, wiping out any hope of computing the sum in double precision
(due to the terms in the sum varying over many orders of magnitude). Remember that the result of this sum
must be between −1 and +1, yet individual terms in the sum can be hundreds of orders of magnitude larger
than this!

Here’s the bottom line: If we wish to evaluate a function at a given point x using a Taylor series, it is best to
choose a known value x0 that is

• close to the x we wish to compute (at least such that x is within the radius of convergence, but preferably as
close to x0 as possible) and

• a point at which f (n)(x0) is known or very easily computed,

so that we may use the Taylor series to evaluate a function to double precision quickly and efficiently using only
addition, subtraction, multiplication, and division.

7.3.1 Computing π with a Taylor Series

We can also use Taylor series to evaluate irrational numbers. E.g., π can be computed via a very clever trick. Let’s
look at the Taylor series expansion for f(x) = 1/(1 + x) about x0 = 0:

f (0)(0) = 1
(1+x)

∣∣∣
x=0

= 1 = (−1)00!

f (1)(0) = − 1
(1+x)2

∣∣∣
x=0

= −1 = (−1)11!

f (2)(0) = 2 1
(1+x)3

∣∣∣
x=0

= 2 = (−1)22!

f (3)(0) = −3! 1
(1+x)4

∣∣∣
x=0

= −3! = (−1)33!

...
...

...

f (n)(0) = (−1)nn! 1
(1+x)n

∣∣∣
x=0

= (−1)nn!

The Taylor series can then be written

f(x) =

∞∑
n=0

(−1)nxn
n!

n!
=

∞∑
n=0

(−1)nxn

The radius of convergence is 1. Let’s focus on the positive values of x. This series will definitely converge at
0 < x < 1. Define w2 = x. Then

f(w2) =
∞∑
n=0

(−1)nw2n =
1

1 + w2

Integrate both sides of this equation from w = 0 to w = y. Then we get

tan−1(y) = y − y3

3
+
y5

5
− y7

7
+ . . .
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Assume ε > 0, where ε � 1. The series will converge at 1̄ = 1 − ε, and will converge to π/4 as ε → 0, since
limε→0 tan−1(1− ε) = π/4. Thus we have

π/4 ≈ tan−1(1̄) ≈ 1− 1/3 + 1/5− 1/7 + . . . =⇒ π ≈ 4− 4/3 + 4/5− 4/7 + . . .

This series, known as the Gregory-Leibniz series, does converge to π, albeit extremely slowly: only 5 significant
digits of π will be obtained after computing 500,000 terms in the sum. Perhaps we should not be surprised by this
slow convergence; the Ratio Test for this series yields an indeterminate result.

Open Exercise

Assuming that
√

3 is known exactly, construct an algorithm based on the same approach as above for evaluating π
using the Taylor series of tan−1

(√
3/3
)

= π/6. Your algorithm may only evaluate
√

3 once. How many terms in the
sum are required to obtain a correct value of π to 8 and 16 significant digits? Is the convergence of this algorithm
faster than the Gregory-Leibniz series? Why or why not?

In general, a Taylor series approximation is not the best way of computing irrational numbers on the computer.
Often you will find other series or even sequence representations that work better. For example, the following series

π = 3 +
4

2× 3× 4
− 4

4× 5× 6
+

4

6× 7× 8
− 4

8× 9× 10
+ · · ·

converges much faster, achieving 3 significant digits of pi after only 5 terms. This series was found in the 15th
century.

7.4 Generic Bases, Fourier Series

Taylor series are but just one way of approximating functions via a series approximation on a computer. In general,
we can approximate a function on the computer via

f(x) =

∞∑
n=0

anφn(x),

where φn(x) is called a basis function, and an is the coefficient. If f(x) is simply a polynomial, then φn(x) = xn

and the sum will truncate at n equal to the polynomial order. We can also use polynomials for arbitrary functions,
but as we saw, this is equivalent to a Taylor series representation, and the radius of convergence might be very
limited or the convergence very slow in some cases. One reason for this is the fact that for large values of x, the
values of xn or (x− x0)n become very large, requiring for convergence that an drop very rapidly with increasing n
or, as we saw in the previous section, incredible cancellation for large values of x or (x− x0).

To address this limitation of polynomials and possibly obtain much faster convergence, suppose we adopt sines
and cosines as basis functions. This Fourier basis is a very desirable one, because unlike the polynomial basis of
a power or Taylor series, when x becomes large sines and cosines will always evaluate between −1 and +1.

The Fourier basis can reliably approximate an arbitrary, smooth function f(x) on some interval −L < x < L
using the Fourier series:

f(x) =
a0

2
+
∞∑
m=1

[
am cos

(mπx
L

)
+ bm sin

(mπx
L

)]
Effectively, a Fourier series representation of a function is simply a sum of wiggles with different wavelengths; the
wavelength of a given sine or cosine in the Fourier series is λm = L/m, so as we increase m, the wavelength of the
underlying basis function shrinks. So smooth functions without sharp features should possess Fourier series that
converge quite rapidly.

Next, notice that if we evaluate the Fourier series outside the original interval, at x → x + 2NL, where N is
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any integer, we get

f(x+ 2NL) =
a0

2
+

∞∑
m=1

[
am cos

(
mπ(x+ 2NL)

L

)
+ bm sin

(
mπ(x+ 2NL)

L

)]

=
a0

2
+
∞∑
m=1

[
am cos

(mπx
L

+ 2mNπ
)

+ bm sin
(mπx

L
+ 2mNπ

)]
=

a0

2
+
∞∑
m=1

[
am cos

(mπx
L

)
+ bm sin

(mπx
L

)]
= f(x).

That is to say, the Fourier series of f(x) is a periodic function outside the original interval x ∈ [−L,L]
with period 2L.

Corollary: If the underlying function f(x) (i.e., the function we wish to represent as a Fourier series) is
smooth but is not periodic on this interval, the Fourier series will need to represent the discontinuity in the
function or its derivatives at those boundary points x = ±L and will generally be very slow to converge there.
This is because sines and cosines are smooth, and approximating a discontinuous function with a smooth wavy
one requires very short wavelength waves, requiring very short wavelength wiggles λm = L/m to reach convergence
(i.e., the number of terms in the sum would need to be very large to approach the correct value in the neighborhood
of such discontinuities).

Useful Tip: A Fourier series of a function can be computed in an interval away from x = 0 by simply shifting
the x coordinate. For example, if we wish to evaluate the Fourier series of f(x) on an interval x ∈ [0, 4], then this
would be equivalent to defining y(x) = x− 2 and evaluating the Fourier series of f (y(x)) = f(x− 2) in the interval
x ∈ [−2, 2].

Fourier series are extremely useful on computers, and since our ears interpret only a limited frequency range of
sound waves, we have Fourier series to thank for the very efficient MP3 audio format. Consider a sound wave as
a function f(t). MP3s saves space by removing coefficients am and bm in the Fourier series of f(t), so that when
the audio is reconstructed, we can still identify the content of the sound. Removing coefficients is equivalent to
removing wavelength from the sound, and sometimes these cut-out wavelengths correspond to wavelengths that
are out of the range of human hearing, making MP3 audio indistinguishable from the original wave, despite the
fact that it may have removed a very large fraction of the data. In the case when we simply wish to restrict the
overall data bandwidth when streaming audio, we can truncate wavelengths within the range of human hearing,
yet the sound will still be easily understood. This is typically what happens to the audio signal when you speak to
someone over the phone.

Source: http://dsp.stackexchange.com/questions/69/why-is-the-fourier-transform-so-important:
During a call, when you press a button on your phone, notice how the different numbers produce slightly

different sounds? Each of these sounds possesses a different Fourier spectrum that, e.g., an automated phone
system can process and lead you to the correct department.

Fourier series are also useful for very accurately approximating functions when solving differential equations,
when the solution cannot be solved by pencil and paper using known techniques. This is in part due to the fact
that the derivative of the Fourier series of f(x) is very simple to compute:

f ′(x) =

∞∑
m=1

(mπ/L)
[
−am sin

(mπx
L

)
+ bm cos

(mπx
L

)]
.

Definition: Even and odd functions.

• We say a function f(x) is even if f(x) = f(−x). f(x) = cos(x) falls into this category.

• We say a function f(x) is odd if f(x) = −f(−x). f(x) = sin(x) falls into this category.

Corollary #1: The integral of an even function over an interval that evenly straddles zero—i.e., x ∈ [−L,L]—
will evaluate to twice the integral spanning x ∈ [0, L]:∫ L

−L
f(x)dx = 2

∫ L

0
f(x)dx, for f(x) even. (7.1)
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Corollary #2: The integral of an odd function over an interval that evenly straddles zero—i.e., x ∈ [−L,L]—
will evaluate to zero, as the area under the curve for x > 0 will exactly cancel the area under the curve at x < 0
(odd functions evaluate to zero at x = 0):∫ L

−L
f(x)dx = 0, for f(x) odd. (7.2)

Identities for even and odd functions:

1. even × even = even

2. even × odd = odd

3. odd × odd = even

Definition: The Kronecker delta symbol, δm,n, is equal to 1 if m = n and 0 otherwise.
To compute the coefficients in a Fourier series am and bm, we make use of the orthogonality of sines and cosines.

Namely, that for integers m and n: ∫ L

−L
sin
(mπx

L

)
sin
(nπx
L

)
dx = δm,nL∫ L

−L
cos
(mπx

L

)
cos
(nπx
L

)
dx = δm,nL∫ L

−L
sin
(mπx

L

)
cos
(nπx
L

)
dx = 0

Proving the above orthogonality relations is greatly simplified by the following trigonometric angle sum identity
(which itself can be derived from, e.g., Euler’s formula):

cos(ᾱ± β̄) = cos ᾱ cos β̄ ∓ sin ᾱ sin β̄,

where we are free to define ᾱ = αx, and β̄ = βx. This implies that

cos(αx− βx)− cos(αx+ βx) = (cos(αx) cos(βx) + sin(αx) sin(βx))− (cos(αx) cos(βx)− sin(αx) sin(βx))

= 2 sin(αx) sin(βx).

Defining α = mπ
L and β = nπ

L , we get for the top integral:∫ L

−L
sin(αx) sin(βx)dx = 2

∫ L

0
sin(αx) sin(βx)dx (odd × odd = even)

= 2× 1

2

∫ L

0
[cos ((α− β)x)− cos ((α+ β)x)] dx

=

∫ L

0
[cos ((α− β)x)− cos ((α+ β)x)] dx.

Now, for m = n 6= 0, we get α = β, and∫ L

−L
sin(αx) sin(βx)dx =

∫ L

0

[
cos(0)− cos

(
2mπ

L
x

)]
dx

=

∫ L

0

[
1− cos

(
2mπ

L
x

)]
dx

= L−
[
− sin

(
2mπ

L
x

)]L
0

= L.

Obviously for m = n = 0, the integral becomes
∫ L

0 [cos(0)− cos(0)]dx = 0, which is actually easier to see from
the original expression of the integral.
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For m! = n, we get α 6= β, and∫ L

−L
sin(αx) sin(βx)dx =

∫ L

0
[cos ((α− β)x)− cos ((α+ β)x)] dx

=

[
sin ((α− β)x)

(α− β)

]L
0

−
[

sin ((α+ β)x)

(α+ β)

]L
0

=
sin ((α− β)L)

(α− β)
− sin ((α+ β)L)

(α+ β)

=
sin
(

(m−n)πL
L

)
(m−n)π

L

−
sin
(

(m+n)πL
L

)
(m+n)π

L

= L

[
sin ((m− n)π)

(m− n)π
− sin ((m+ n)π)

(m+ n)π

]
= 0,

since m − n 6= 0 and m + n 6= 0 (thus we are not dividing by zero), and sin(`π) = 0 for any integer ` (thus the
numerators are both zero).

We conclude that ∫ L

−L
sin
(mπx

L

)
sin
(nπx
L

)
dx = δm,nL.

Open Exercise

Using the same approach as above, prove the remaining orthogonality relations:∫ L

−L
cos
(mπx

L

)
cos
(nπx
L

)
dx = δm,nL∫ L

−L
sin
(mπx

L

)
cos
(nπx
L

)
dx = 0.

Let’s return to the original expression for Fourier series:

f(x) =
a0

2
+

∞∑
m=1

[
am cos

(mπx
L

)
+ bm sin

(mπx
L

)]
Multiply both sides by sin

(
nπx
L

)
and then take the integral

∫ L
−L dx of both sides:∫ L

−L
f(x) sin

(nπx
L

)
dx =

∫ L

−L

a0

2
sin
(nπx
L

)
dx+

∫ L

−L

∞∑
m=1

am sin
(nπx
L

)
cos
(mπx

L

)
dx

+

∫ L

−L

∞∑
m=1

bm sin
(nπx
L

)
sin
(mπx

L

)
dx.

The a0 term will evaluate to zero, since the integral of an odd function over an even interval across zero will be zero
(Corollary #2, Eq. 7.2). As for the remaining terms, the sum of an integral is equal to the integral of a sum, so∫ L

−L
f(x) sin

(nπx
L

)
dx = 0 +

∞∑
m=1

am

∫ L

−L
sin
(nπx
L

)
cos
(mπx

L

)
dx

+
∞∑
m=1

bm

∫ L

−L
sin
(nπx
L

)
sin
(mπx

L

)
dx

= 0 + 0 +

∞∑
m=1

bmδm,nL

= bnL
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Thus we have found the expression for bn in terms of an integral of our original function only. Next, let’s
compute an using a similar trick.

Multiply both sides of the original Fourier series expression by cos
(
nπx
L

)
and then take the integral

∫ L
−L dx of

both sides: ∫ L

−L
f(x) cos

(nπx
L

)
dx =

∫ L

−L

a0

2
cos
(nπx
L

)
dx+

∫ L

−L

∞∑
m=1

am cos
(nπx
L

)
cos
(mπx

L

)
dx

+

∫ L

−L

∞∑
m=1

bm cos
(nπx
L

)
sin
(mπx

L

)
dx

=

∫ L

−L

a0

2
cos
(nπx
L

)
dx+

∞∑
m=1

am

∫ L

−L
cos
(nπx
L

)
cos
(mπx

L

)
dx

+
∞∑
m=1

bm

∫ L

−L
cos
(nπx
L

)
sin
(mπx

L

)
dx

=

∫ L

−L

a0

2
cos
(nπx
L

)
dx+

∞∑
m=1

amδm,nL+ 0.

Notice that when n = 0, cos
(
nπx
L

)
= 1, so the second term vanishes and we get∫ L

−L

a0

2
dx =

∫ L

−L
f(x)dx

=⇒ a0 =
1

L

∫ L

−L
f(x)dx

Now for n > 0 the the first term vanishes (can prove by taking the simple integral) and we get:

an =
1

L

∫ L

−L
f(x) cos

(nπx
L

)
dx

7.4.1 Fourier Series Summary

Fourier Series Summary

A function f(x) can be represented between x = −L and x = +L as a Fourier series

f(x) =
a0
2

+

∞∑
n=1

[
an cos

(nπx
L

)
+ bn sin

(nπx
L

)]
,

where the Fourier coefficients an and bn can be computed via

an =
1

L

∫ L

−L
f(x) cos

(nπx
L

)
dx

bn =
1

L

∫ L

−L
f(x) sin

(nπx
L

)
dx.

The Fourier series representation of the function f(x) will be periodic with period of 2L.
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7.4.2 Fourier Series Examples

Example #1

Compute the Fourier series of f(x) = 1− x2, x ∈ [−1, 1].

This boils down to computing the Fourier coefficients for this function, for which we just derived expressions:

a0 =
1

L

∫ L

−L
(1− x2)dx

= 2
1

L

∫ L

0
(1− x2)dx = 2

[
x− x3

3

]L
0

= 2

[
L− L3

3

]
.

L = 1 =⇒ a0 = 2− 2

3
=

4

3

am =
1

L

∫ L

−L
(1− x2) cos

(mπx
L

)
dx

=
2

L

∫ L

0
(1− x2) cos

(mπx
L

)
dx

=
2

L

[∫ L

0
cos
(mπx

L

)
dx−

∫ L

0
x2 cos

(mπx
L

)
dx

]
=

2

L

[
L

mπ
sin
(mπx

L

)]L
0

− 2

L

[∫ L

0
x2 cos

(mπx
L

)
dx

]
= 0− 2

L

[∫ L

0
x2 cos

(mπx
L

)
dx

]
(L = 1 =⇒ ) = −2

[(
π2m2x2 − 2

)
sin(πmx) + 2πmx cos(πmx)

π3m3

]1

0

= −4
cos(πm)

π2m2
= − 4

(mπ)2
(−1)m

bm =
1

L

∫ L

−L
(1− x2) sin

(nπx
L

)
dx = 0

Notice we used integration by parts, as well as properties of even and odd functions to evaluate the above
integrals.

We conclude by writing the Fourier series:

f(x) =
a0

2
+

∞∑
m=1

[
am cos

(mπx
L

)]
=

2

3
− 4

π2

∞∑
m=1

(−1)m

m2
cos(mπx)

Notice that the Fourier coefficients converge as n2, giving us an idea of how many terms we would need to
compute the Fourier series of this function at a given desired precision. Note also that this example is quite
artificial, as it would be a very rare situation in which we would wish to replace a simple polynomial with a Fourier
basis.

Let’s look at another, simpler example:
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Example #2

Compute the Fourier series for the step function

fstep(x) =

{
−1, if − 1 ≤ x ≤ 0

1, if 0 < x < 1
(7.3)

Let’s stop and analyze this function first before computing coefficients. Notice that it’s an odd function. From
that, we know immediately that all the cosine coefficients am in the Fourier expansion must be zero, including a0.
Thus we only need to compute the sine bm coefficients.

Note also that L = 1, which we’ll apply at the outset:

bm =

∫ 0

−1
(−1) sin(mπx)dx+

∫ 1

0
(+1) sin(mπx)dx

=
1

mπ

(
−[− cos(mπx)]0−1 + [− cos(mπx)]10

)
( =

2

mπ

(
[− cos(mπx)]10

)
)

=
1

mπ
(+[1− cos(−mπ)]− [cos(mπ)− 1])

=
1

mπ
(+[1− cos(mπ)]− [cos(mπ)− 1])

=
2

mπ
([1− cos(mπ)])

=
2

mπ
([1− (−1)m])

Thus the coefficients are zero for m even and for m odd, they are 4/(mπ). Thus the Fourier series of the step
function is simply

fstep,FS(x) =
4

π

(
sin(πx) +

sin(3πx)

3
+

sin(5πx)

5
+ . . .

)
=

4

π

∞∑
n=1

sin((2n− 1)πx)

2n− 1
(7.4)

Notice convergence of coefficients is very slow, dropping in magnitude at a rate proportional to 1/n. How do
we know the Fourier series will converge to the exact function values at all? To what value will the Fourier series
converge where the function is discontinuous?

7.4.3 Fourier Convergence Theorem

The Fourier series of a piecewise continuous function f(x) will converge to the exact value of that function at all
points x where the function is continuous. At other points, the series will converge to [f(x+) + f(x−)]/2.

Extending the Fourier series outside the original interval of x = −L to x = +L will yield a function that is
periodic with period 2L. This means that to determine where the Fourier series converges outside the original
interval, you simply periodically extend the function outside the interval.

To understand what it means to periodically extend a function, imagine making a stamp out of the function in
the original interval. Now wet the stamp with ink, take a clean sheet of graph paper, and first stamp the function
in the original interval. You now have the original function in the interval from −L to +L. Next, without rotating
or shifting the stamp up or down in any way, stamp the function again to the immediate right and left. This
determines how the function will be defined from −3L to −L, and from +L to +3L, respectively. You can continue
stamping to x→∞ and x→ −∞.

Caution! Periodically extending the original function will usually result in discontinuities at x = ±L. When
this happens, you must be careful to apply the Fourier Convergence Theorem to properly know to what points
Fourier series of the function will converge at these discontinuities. (Recall: it’s just the average value of the
function.)
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Exercise #1

Sketch the following function’s Fourier series representation from x = −2 to x = +2:

f(x) =

{
0, if − 1 ≤ x < 0

x2, if 0 ≤ x < 1

Solution

Theanswerwillbeaplotofthefunction

f(x)=






0,ifx=−2

(x+2)
2
,if−2<x<−1

1
2,ifx=−1

0,if−1<x≤0

x
2
,if0<x<1

1
2,ifx=1

0,if1<x≤2

whichisaperiodicextensionoftheoriginalfunction,whichwasdefinedontheintervalx∈[−1,1).

Exercise #2

Given the following function f(x):

f(x) =

{
−10x, −1 ≤ x < 0

10x+ 4, 0 ≤ x < 1,

find to which value the Fourier series of f(x), fFS(x), will converge at the following points (use the Fourier Convergence
Theorem): x = 0, x = 1, x = −1, and x = − 1

2 .

Solution

fFS(0)=2,fFS(1)=12,fFS(−1)=12,andfFS(−1/2)=5.

Exercise #3

Given the following function f(x):

f(x) =

 3x3 − 2x2, −1 ≤ x < − 1
2

ln(ex), − 1
2 ≤ x <

1
2

x2, 1
2 ≤ x < 1,

find to which value the Fourier series of f(x), fFS(x), will converge at the following points (use the Fourier Convergence
Theorem): x = 0, x = 1, x = −1, x = − 1

2 , and x = 23, 101.

Solution

fFS(0)=0,fFS(1)=−2,fFS(−1)=−2,fFS(−1/2)=−11/16,andfFS(23,101)=−2.

7.4.4 Gibbs Phenomenon

Although the Fourier convergence theorem guarantees that the function will converge everywhere, it does not say
how rapidly this convergence will take place. Discontinuities can be seen as a zero-wavelength feature, requiring
very large m values to approximate. Thus Fourier series will converge extremely slowly at discontinuities. In fact,
Fourier series truncated at a finite M will exhibit the Gibbs Phenomenon, or “ringing artifacts” at discontinuities.
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Figure 7.1: Gibbs phenomenon appearing from the evaluation of a finite Fourier series sum fstep,FS(x,N) (Eq. 7.5)
of the step function fstep(x) (Eq. 7.3). Gibbs oscillations appear at points of discontinuity: x = ±1 and x = 0 in
this plot. At each discontinuity, the expected Gibbs overshoot of about 1.2 (= 1.09h, where h = 2) is plotted as
horizontal dashed lines. Finite sums with N = 3, N = 10, and N = 100 nonzero terms in the Fourier series are
plotted.

As an example, consider the Fourier series representation of the step function fstep,FS(x) (Eq. 7.4), except
summed to a finite N :

fstep,FS(x,N) =
4

π

N∑
n=0

sin((2n− 1)πx)

2n− 1
. (7.5)

Given its incredibly sharp features, this function seems like a poor fit to the incredibly smooth Fourier basis,
even for large values of N . As shown in Fig. 7.1, for values of N = 3, 10, and even 100, oscillations near the
discontinuities at x = 0 and x = ±1 shrink in wavelength, but notice the overshoot at the discontinuities does not
appear to converge.

Knowing that the Fourier convergence theorem guarantees the Gibbs phenomenon will be quenched at infinite
terms in the sum, one might not be too concerned about this phenomenon. As it turns out, for all finite sums in
a Fourier series representation of a discontinuity of total height h = 2 like in the example shown in Fig. 7.1, the
discontinuity will be overshot on each side by h× 0.089392 . . ., or about 1.09h on the left and 1.09h on the right of
the discontinuity (this number is related to the Wilbraham-Gibbs constant).

Again, it must be stressed that this overshoot does not converge away with finite number of terms. At higher
N in the Fourier series representation, the overshoot remains the same height but gets closer and closer to the
discontinuity. Only in the limit N → ∞ does the overshoot disappear; all finite values of N will yield this same
overshoot.

Note that the Gibbs phenomenon is not restricted to Fourier series. In fact it occurs across all smooth basis
functions, including polynomial bases.
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MATH 521, Fall 2018 Notes

Prof. Zachariah B. Etienne

Chapter 8: Polynomial Interpolation & Extrapolation

Suppose we are given data for a function f(x) at a discrete number of points x0 < x1 < ... < xN−1 < xN only.
Then, assuming f(x) is smooth, how do we estimate values for other points x ∈ [x0, xN ]? How about x /∈ [x0, xN ]?

Definition: The process of estimating values of f(x) at x ∈ [x0, xN ] based on known values of the function
{f(x0), f(x1), ..., f(xN )} is known as interpolation.

Definition: The process of estimating values of f(x) at x /∈ [x0, xN ] based on known values of the function
{f(x0), f(x1), ..., f(xN )} is known as extrapolation.

In the following sections, we will exclusively refer to interpolation, but the discussion could equally well be
applied to extrapolation.

8.1 Lagrange Polynomial Interpolation

Example #1

Suppose we have values of a function at only two points x0 < x1: f0 = f(x0) and f1 = f(x1). How do we interpolate
values of the function between x0 and x1? How do we extrapolate the function outside of this range of x?

The equation of a line (i.e., a first-order polynomial P1(x)) between f0 and f1 can be written

P1(x) = c1x+ c0,

where c1 is the slope and c0 is the y-intercept. c0 and c1 are unknown coefficients, but we are given values of the
function at two points x0 and x1. We wish for the line P1(x) to pass through the function at these two points.
Thus we obtain two equations and two unknowns:

P1(x0) = f(x0) = f0 = c1x0 + c0

P1(x1) = f(x1) = f1 = c1x1 + c0.

Definition: Writing this set of equations in matrix form, we obtain the Vandermonde matrix A for com-
puting the unknown linear interpolation coefficients.

Ac =

[
1 x0

1 x1

] [
c0

c1

]
= f =

[
f0

f1

]
.

Remember that x0, x1, f0, and f1 are known, and c0 and c1 are unknowns. Solving this linear system of
equations for c0 and c1, we obtain

c0 = f0 − x0
f1 − f0

x1 − x0

c1 =
f1 − f0

x1 − x0
.

Notice the second equation yields the slope of the function, and in the limit where x1 → x0, this is precisely the
definition of derivative!
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Thus the equation that yields the interpolated or extrapolated value of the function f(x) at any x based on
this linear approximation is given by

P1(x) =
f1 − f0

x1 − x0
x+ f0 − x0

f1 − f0

x1 − x0

=
f1 − f0

x1 − x0
(x− x0) + f0

= (f1 − f0)
x− x0

x1 − x0
+ f0. (8.1)

Example #2

Repeat Example #1, but if the function f(x) is given at three points x0 < x1 < x2.

The lowest degree polynomial with 3 coefficients is a quadratic:

P2(x) = c2x
2 + c1x+ c0. (8.2)

Knowing the value of f(x) at x0, x1, and x2 provides us with three equations and three unknowns:

P2(x0) = f(x0) = f0 = c2x
2
0 + c1x0 + c0

P2(x1) = f(x1) = f1 = c2x
2
1 + c1x1 + c0

P2(x2) = f(x2) = f2 = c2x
2
2 + c1x2 + c0,

where again we require that the polynomial fitting the function overlaps the function at these three points. Once
we have these unknowns c2, c1, and c0, we can immediately perform quadratic interpolation and extrapolation of
the function.

Writing this set of equations in matrix form, we obtain the Vandermonde matrix for computing the unknown
quadratic interpolation coefficients:

Ac =

 1 x0 x2
0

1 x1 x2
1

1 x2 x2
2

 c0

c1

c2

 =

 f0

f1

f2

 = f .

The inverse of the Vandermonde matrix, A−1, yields the coefficients:

c =

 c0

c1

c2

 = A−1f =


x1x2

(x0−x1)(x0−x2)
x0x2

(x1−x0)(x1−x2)
x0x1

(x2−x0)(x2−x1)

− x1+x2
(x0−x1)(x0−x2) − x0+x2

(x1−x0)(x1−x2) − x0+x1
(x2−x0)(x2−x1)

1
(x0−x1)(x0−x2)

1
(x1−x0)(x1−x2)

1
(x2−x0)(x2−x1)


 f0

f1

f2



=

 x1x2 x0x2 x0x1

−(x1 + x2) −(x0 + x2) −(x0 + x1)
1 1 1




f0

(x0−x1)(x0−x2)
f1

(x1−x0)(x1−x2)
f2

(x2−x0)(x2−x1)


=

 x1x2 x0x2 x0x1

−(x1 + x2) −(x0 + x2) −(x0 + x1)
1 1 1

 f̃0

f̃1

f̃2


Next, let’s plug these coefficients into the original quadratic expression (Eq. 8.2) to obtain the expression for
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any interpolated value f(x) for a quadratic polynomial:

P2(x) = c2x
2 + c1x+ c0

=
[
f̃0 + f̃1 + f̃2

]
x2 −

[
(x1 + x2)f̃0 + (x0 + x2)f̃1 + (x0 + x1)f̃2

]
x+

[
x1x2f̃0 + x0x2f̃1 + x0x1f̃2

]
= f̃0

[
x2 − (x1 + x2)x+ x1x2

]
+ f̃1

[
x2 − (x0 + x2)x+ x0x2

]
+ f̃2

[
x2 − (x0 + x1)x+ x0x1

]
= f̃0 [x(x− x1) + x2(x1 − x)] + f̃1 [x(x− x0) + x2(x0 − x)] + f̃2 [x(x− x1) + x0(x1 − x)]

= f̃0 [x(x− x1)− x2(x− x1)] + f̃1 [x(x− x0)− x2(x− x0)] + f̃2 [x(x− x1)− x0(x− x1)]

= (x− x2)(x− x1)f̃0 + (x− x2)(x− x0)f̃1 + (x− x0)(x− x1)f̃2

=

∏
i 6=0(x− xi)∏
i 6=0(x0 − xi)

f0 +

∏
i 6=1(x− xi)∏
i 6=1(x1 − xi)

f1 +

∏
i 6=2(x− xi)∏
i 6=2(x2 − xi)

f2

=
2∑
i=0

`i(x)f(xi), where `i(x) =
∏

0≤j≤2,
i 6=j

(x− xj)
(xi − xj)

(8.3)

Notice that the above expression holds true for first-order (linear) polynomials as well (cf. Eq. 8.1), if each two
in the bottom expression is replaced by a one.

Looking at the inverse of the Vandermonde matrix for third-order polynomial interpolation,

A−1f =


−x1x2x3 −x0x2x3 −x0x1x3 −x0x1x2

x1x2 + x1x3 + x2x3 x0x2 + x0x3 + x2x3 x0x1 + x0x3 + x1x3 x0x1 + x0x2 + x1x2

−(x1 + x2 + x3) −(x0 + x2 + x3) −(x0 + x1 + x3) −(x0 + x1 + x2)
1 1 1 1



f̃0

f̃1

f̃2

f̃3

 ,
where, extending the pattern for N = 2 order polynomials to N = 3 order, we define

f̃i = fi

/ ∏
0≤j≤3,
j 6=i

(xi − xj) ,

we will find by following the same steps as with second order that at third order

P3(x) =c3x
3 + c2x

2 + c1x+ c0

=
3∑
i=0

`i(x)f(xi) where `i(x) =
∏

0≤j≤3,
i 6=j

(x− xj)
(xi − xj)

(8.4)

as well. As we have shown, the above formula holds for PN (x), where the upper limits on the sum and product
are n = 1, 2, or 3. It can be proven that the pattern we found in Eqs. 8.1, 8.3, and 8.4 continues to hold for all
polynomial degrees N , so that

PN (x) =

N∑
i=0

cix
i =

N∑
i=0

`i(x)f(xi), where `i(x) =
∏

0≤j≤N,
i 6=j

(x− xj)
(xi − xj)

. (8.5)

Of course, this assumes that we have evaluated f(x) at N + 1 points (because a sum running from 0 to N contains
N + 1 terms). Edward Warring may be the discoverer of this formula, but Joseph Louis Lagrange published it
about 15 years after Warring’s discovery, in 1795. Thus it is known as the Lagrange interpolation formula.
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Example #3

Akin to example 1, pg. 88 of Kunz’s Numerical Analysis, McGraw-Hill 1957, LCCCN 56-13395
Using Lagrange polynomial interpolation with a rank-4 polynomial, evaluate log10 47 from the following table:

log10 2 ≈ 0.3010299957

log10 3 ≈ 0.4771212547

log10 5 ≈ 0.6989700043

log10 7 ≈ 0.8450980400.

What is the relative error in this interpolation?

Recalling that log10 (ab) = log10 a+ log10 b, we can quickly construct all the closest values where the logarithm
is known:

f0 = log10 42 = log10(2 · 3 · 7) = log10 2 + log10 3 + log10 7 ≈ 1.6232492904

f1 = log10 45 = log10(32 · 5) = 2 log10 3 + log10 5 ≈ 1.6532125137

f2 = log10 48 = log10(24 · 3) = 4 log10 2 + log10 3 ≈ 1.6812412375

f3 = log10 49 = log10 72 = 2 log10 7 ≈ 1.6901960800

f4 = log10 50 = log10(52 · 2) = 2 log10 5 + log10 2 ≈ 1.6989700043.

Thus we have found x0 = 42, x1 = 45, x2 = 48, x3 = 49, and x4 = 50. The interpolation yields, for x = 47,

P4(47) =
x− x1

x0 − x1

x− x2

x0 − x2

x− x3

x0 − x3

x− x4

x0 − x4
f0 +

x− x0

x1 − x0

x− x2

x1 − x2

x− x3

x1 − x3

x− x4

x1 − x4
f1 +

x− x0

x2 − x0

x− x1

x2 − x1

x− x3

x2 − x3

x− x4

x2 − x4
f2 +

x− x0

x3 − x0

x− x1

x3 − x1

x− x2

x3 − x2

x− x4

x3 − x4
f3 +

x− x0

x4 − x0

x− x1

x4 − x1

x− x2

x4 − x2

x− x3

x4 − x3
f4

=
(2)(−1)(−2)(−3)

(−3)(−6)(−7)(−8)
f0 +

(5)(−1)(−2)(−3)

(3)(−3)(−4)(−5)
f1 +

(5)(2)(−2)(−3)

(6)(3)(−1)(−2)
f2 +

(5)(2)(−1)(−3)

(7)(4)(1)(−1)
f3 +

(5)(2)(−1)(−2)

(8)(5)(2)(1)
f4

= − 1

84
f0 +

1

6
f1 +

5

3
f2 −

15

14
f3 +

1

4
f4 = 1.6720978814,

The exact value of log10 47 to 15 significant digits is 1.67209785793572, meaning that the value obtained through
interpolation has relative error of

ERel =
|1.6720978814− 1.672097857935|

1.672097857935
≈ 1.40× 10−8.

8.2 Numerical Implementation

Suppose we wish to implement the Lagrange interpolation formula of Eq. 8.5 numerically. As input, we will need
some function f(x) evaluated at N points xj , where x0 < x1 < ... < xj < xj+1 < ... < xN , and as output, we
will be able to approximately evaluate f(x) at any x ∈ [x0, xN ]. This does not exclude use of this formula for
extrapolation, however; it can be evaluated at any x outside the interval as well, and such an extrapolation can be
quite accurate for some range of x /∈ [x0, xN ] depending on the underlying function.

We might find this strategy quite useful if f(x) is extremely expensive to compute, and we wish to evaluate an
approximate expression for f(x) at a very large number of points x in the neighborhood of [x0, xN ]. It could also
be useful if we cannot evaluate the function at points between xi and xi+1 (e.g., because our measuring instrument
does not provide the data), yet we have a reasonable expectation that the function f(x) is smooth.

In pseudocode, the Lagrange interpolation formula can be written
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Lagrange Polynomial Interpolation Pseudocode

output = 0.0

do i=0,N

l_i = 1.0

do j=0,N

if(j not equal to i) then

l_i = l_i * (x - x[j])/(x[i] - x[j])

end if

end do

output = output + l_i * f[i]

end do

Exercise:

Suppose we need to interpolate M points, using Nth order Lagrange polynomial interpolation. We choose to use the
algorithm given above in pseudocode. What is the computational complexity of such an algorithm?

Solutions:

O(MN
2
).

8.3 Lagrange Interpolation in Barycentric Form

The above algorithm is functional, but inefficient for cases in which we must interpolate many points between
x0 and xN , as each point requires O(N2) operations for an N − 1-order polynomial interpolation. Additional
interpolations can be reduced to an O(N) operation as follows. First consider the Lagrange interpolation formula
(Eq. 8.5):

PN (x) =
N∑
i=0

f(xi)`i(x) =
N∑
i=0

f(xi)
∏

0≤j≤N,
j 6=i

x− xj
xi − xj

.

Notice the Barycentric weights

wi =
∏

0≤j≤N,
j 6=i

1

xi − xj

can be precomputed, and separated from the rest of the product appearing in PN (x):

PN (x) =
N∑
i=0

f(xi)wi
∏

0≤j≤N,
j 6=i

(x− xj)

 .

The O(N) product on the right still depends on i, so this is still an O(N2) algorithm. However, this dependency
can be removed by defining a new quantity `(x) that does not depend on i:

`(x) =
N∏
m=0

(x− xm) = (x− xi)
∏

0≤j≤N,
j 6=i

(x− xj) =⇒
∏

0≤j≤N,
j 6=i

(x− xj) =
`(x)

x− xi
.

We now have the Lagrange interpolation formula in Barycentric form:

PN (x) = `(x)
N∑
i=0

f(xi)wi
x− xi

.
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8.3.1 Implementation of Lagrange Interpolation in Barycentric Form

From the previous page, the Lagrange interpolation formula in Barycentric form is given by

PN (x) = `(x)
N∑
i=0

f(xi)wi
x− xi

.

Here is the basic numerical approach for efficient implementation of the above expression.
Given some number of points M that need to be interpolated in the range x ∈ (x0, xN ), we first precompute

and store an N + 1-element array f(xi)wi, which is an O(N2) operation, since computation of each of the N wi’s
is an O(N) operation. Then evaluating `(x) and the sum are each an O(N) operation, but the operations are
independent so the total computational complexity to compute PN (x) is the sum of two O(N) operations—i.e.,
computing both is an O(N) operation.

In pseudocode,

Lagrange Polynomial Interpolation in Barycentric Form: Pseudocode

# Inputs: x[i] = x_i: Points at which underlying function f(x) is evaluated

# f[i] = f_i = f(x_i): Values of function at points x_i

# xx[i]: Points xx_i at which we evaluate P_N(xx)

# Output: P_N_xx[point]: P_N(xx[point])

do i=0,N

w_tmp = 1.0

do j=0,N

if(j not equal to i)

w_tmp = w_tmp / (x[i] - x[j])

end if

end do

f_times_w[i] = f[i]*w_tmp

end do

do point=1,M

P_N_xx[point] = 0.0

l_of_x = 1.0

do i=0,N

# "l_of_x" in this loop over i is *independent* of "P_N_xx[point]".

l_of_x = l_of_x * (xx[point] - x[i])

P_N_xx[point] = P_N_xx[point] + f_times_w[i] / (xx[point] - x[i])

end do

P_N_xx[point] = P_N_xx[point] * l_of_x

end do

Notice that the computation of f_times_w[i] is a O(N2) operation, but the computation of the interpolated
function output (stored in variable output) requires O(N) per point x. Thus for a very large number of points to
which we wish to interpolate, this results in an algorithm that costs O(MN +N2) ≈ O(MN) for M � N .

8.4 Truncation Error in Interpolation

Note that the following discussion does not apply to extrapolation.
Lagrange’s polynomial interpolation formula

PN (x) =

N∑
i=0

cix
i =

N∑
i=0

`i(x)f(xi), where `i(x) =
∏

0≤j≤N,
i 6=j

(x− xj)
(xi − xj)

fits a function f(x), sampled at N + 1 points, to a rank-N polynomial PN (x). If f(x) is a smooth (analytic)
function, then we know it can be exactly represented by a power series:

59



f(x) =

∞∑
i=0

cix
i.

Thus in the case of such smooth functions, a polynomial interpolation can be seen as a truncated power series:

f(x) =
∞∑
i=0

cix
i ≈ PN (x) =

N∑
i=0

dix
i = f(x) + E,

where E can be thought of as the truncation error. Intuitively, this error should depend on the points xi where
we sample the function and how slowly the function varies between these points. We will now proceed in deriving
an expression for the error involved in fitting f(x) to PN (x) at points x0 < x1 < . . . < xi < . . . < xN and evaluating
PN (x) instead of f(x) at a point x ∈ [x0, xN ].

Definition: The residual or remainder function RN for Lagrange polynomial interpolation at a point x ∈
[x0, xN ] is simply the difference between the Lagrange interpolating polynomial PN (x) and the original function
f(x):

RN (x) = f(x)− PN (x).

PN (x) is constructed by fitting a polynomial to sampled points xi of the original function f(x). Therefore, at
all points where x overlaps a sampled point (x = xi), the residual function must go to zero. So RN (x) must satisfy

RN (x) = SN (x)× [(x− x0)(x− x1) . . . (x− xN )] = SN (x)
N∏
i=0

(x− xi),

where SN (x) is finite at all x = xi. What is SN (x)?
To find out, let’s define a new function WN (t) such that

WN (t) = RN (t)− SN (x)
N∏
i=0

(t− xi).

Notice that SN is marked as a function of x, so by the definition of the residual function RN (t), WN (t) = 0 when
t = x. Also, WN (t) = 0 at t = xi. Therefore, WN (t) crosses zero a total of at least N + 2 times in the
range t ∈ [x0, xN ].

Assuming the (N + 1)st derivative f(t) exists, we take the (N + 1)st derivative of WN (t) to get

dN+1

dtN+1
WN (t) = W

(N+1)
N (t) = R

(N+1)
N (t)− (N + 1)!SN (x),

where the (N+1)! term comes from taking (N+1) derivatives of
∏N
i=0(t−xi) with respect to t. Exercise to reader:

Prove this.
R

(N+1)
N (t) simplifies as well:

R
(N+1)
N (t) = f (N+1)(t)− dN+1

dtN+1
PN (t) = f (N+1)(t),

since the (N + 1)st derivative of a rank-N polynomial is zero.
Thus we have found that

W
(N+1)
N (t) = f (N+1)(t)− (N + 1)!SN (x).

Recall that WN (t) crosses zero a total of at least N + 2 times in the range t ∈ [x0, xN ]. This means that W ′N (t)
must cross zero at least N + 1 times in the same range (Rolle’s Theorem). Similarly, W ′′N (t) must cross zero at

least N times. This means that W
(k)
N (t) crosses zero at least N + 2− k times, and thus W

(N+1)
N (t) must cross zero

at least once in the range t ∈ [x0, xN ]. Let’s call this zero-crossing t = ξ.
We conclude that there exists at least one point ξ that satisfies

W
(N+1)
N (ξ) = 0 = f (N+1)(ξ)− (N + 1)!SN (x) =⇒ SN (x) =

f (N+1)(ξ)

(N + 1)!
.
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Thus we can write the residual error as

RN (x) =
f (N+1)(ξ)

(N + 1)!

N∏
i=0

(x− xi),

where ξ ∈ [x0, xN ]. This formula is remarkably useful, as it indicates that

• Given a set of points xi, the minimum and maximum error is given by the minimum and maximum of
|f (N+1)(ξ)| (where ξ ∈ [x0, xN ]), respectively.

• Increasing the order of interpolation N may decrease the residual error significantly, provided f(ξ) is smooth
(so that f (N+1)(ξ) < K for some constant K – i.e., f (N+1)(ξ) is bounded) and

∏N
i=0(x − xi) increases more

slowly than (N + 1)!.

• Definition: There exists a set of points xi such that
∏N
i=0(x − xi), and thus the interpolation error, is

minimized. This set of points is known as the Chebyshev nodes. For the case in which x0 = −1 and
xN = 1, the Chebyshev nodes xk are given by

xk = cos

(
(2N + 1− 2k)π

2N + 2

)
.

Example #4

Akin to example 2, pg. 90 of Kunz’s Numerical Analysis, McGraw-Hill 1957, LCCCN 56-13395
Apply this error estimate strategy to Example #3 and compare with the relative error computed in that example.

To estimate the error, first note that

log10 x = y =⇒ x = 10y =⇒ lnx = y ln 10 =⇒ y = log10 x =
lnx

ln 10
.

Thus the derivative term can be computed as follows

f(x) = log10(x) =
lnx

ln 10

f ′(x) =
1

ln 10

1

x

f ′′(x) =
1

ln 10
(−1)

1

x2

f (3)(x) =
1

ln 10
(−1)2 2!

x3

... =
...

f (5)(x) =
1

ln 10
(−1)4 4!

x5
.

Since xi ∈ [42, 50], f (5)(ξ) will be maximized at ξ = 42, yielding a value of f (5)(42) ≈7.98e-8.
Next, we compute

∏N
i=0(x− xi):

4∏
i=0

(x− xi) = (5)(2)(−1)(−2)(−3) = −60

Thus we expect our error to satisfy

R4(47) <
| − 60× 7.98× 10−8|

5!
= 3.99× 10−8,

which is within a factor of 2 of the actual absolute error, |1.6720978814− 1.672097857935| = 2.35× 10−8.
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8.5 Runge’s Phenomenon

The analysis of the previous section indicates that we should be careful about the choice of points at which we
sample our function, and that if the magnitude of |f (N+1)(x)| grows

Consider Runge’s function:

f(x) =
1

1 + 25x2
, , (8.6)

sampled uniformly over the interval x ∈ [−1, 1].
It turns out that the magnitude of this function’s derivatives grow more rapidly than (N + 1)! for |x| & 0.7.

As a result, errors grow without bound in this region (left panel of Fig. 8.1) as the degree of the interpolating
polynomial is increased.

On the other hand, if Runge’s function is sampled at Chebyshev nodes instead of uniformly throughout the
interval, then the errors instead drop to zero (right panel of Fig. 8.1) with increased interpolating polynomial
degree.

We conclude that for some functions, higher polynomial order may not necessarily result in a more accurate
interpolation. This fact is encoded in the definition of the residual function, which depends on the magnitude of
high-order derivatives of the function and the choice of sampling points.

Figure 8.1: Source: http://math.boisestate.edu/~calhoun/teaching/matlab-tutorials/lab_11/html/lab_

11.html. Left panel: Runge phenomenon: polynomials of increasing degree fit to Runge’s function (Eq. 8.6),
using uniform sampling of the function. Right panel: Same as left panel, except polynomial samples at Chebyshev
nodes only.
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MATH 521, Fall 2018 Notes

Prof. Zachariah B. Etienne

Chapter 9: Numerical Integration

Suppose we wish to calculate the definite integral

F =

∫ b

a
f(x)dx,

for some function f(x). An exact expression for the integral will not exist for all functions f(x), so we are forced
to instead approximate the integral by evaluating f(x) at only a finite number of points x = xi. Numerical
integration is the topic within numerical analysis whereby we not only devise algorithms for approximating F , but
more importantly, provide error estimates for F , based on properties of f(x) and our choice of sampling points xi..

In this chapter, we will focus entirely on definite integration formulas for which the integrand is sampled
uniformly; i.e., with unformly-sampled xi.

Definition: Uniformly-sampled—also known as equally-spaced—xi requires that xi = a + i∆x, where i
is an integer and i ∈ [0, N ], and b = a+N∆x, so ∆x = b−a

N .

9.1 The Trapezoidal Rule

Let us first approximate the integral by drawing a line between f(a) and f(b) and computing the area under that
line. That is to say, we wish to compute the area of a trapezoid:

• The area under f(a) in the interval is Fa = (b− a)f(a).

• Next we add the triangular area connected by the points (x, f(x)) = (a, f(a)), (b, f(b)), and (b, f(a)) to obtain
the area of the right triangle (half the area of a rectangle): F4 = (b− a)[f(a)− f(b)]/2

• Summing the two areas we get the area of the resulting trapezoid:

FTrap = Fa + F4 = (b− a)f(a) + (b− a)
f(a)− f(b)

2
=
f(a) + f(b)

2
(b− a). (9.1)

Definition: Definite integration by means of fitting a line to the value of the function at the endpoints of
the integration interval is called the Trapezoidal Rule. I.e., the approximation of F using the Trapezoidal
rule is given by Eq. 9.1.

Obviously the trapezoidal rule this is a not an exact expression for the integral of a generic function f(x) from
x = a to x = b, so we can write it as

F =
f(a) + f(b)

2
(b− a) + ETrap. (9.2)

What is the nature of this error term ETrap? For example, for what functions f(x) would the error term be
zero? (Any function that is linear between a and b.) If we know that the underlying function is smooth over our
interval, it turns out that we can estimate this error term very accurately, based on the properties of the underlying
function.

Next we derive an explicit expression for ETrap.
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9.1.1 The Trapezoidal Rule Error Term

Original Source: http://math.ucsd.edu/~ebender/20B/77_Trap.pdf WARNING: original source has correct
result but presents a flawed argument for computing integration constant B, which actually cancels out, as shown
in our derivation below. We get the same function for the Error.

Note that for one interval of the Trapezoidal rule we only evaluate the function at two points (we will later
learn about integration rules that involve more points). So in this case, N = 1 and ∆x = (b− a)

F =

∫ b

a
f(x)dx =

∫ ∆x

0
f(x+ a)dx.

Our first goal is to try to rewrite the integral in the form

F = FTrap + ETrap =
f(a) + f(b)

2
(b− a) + ETrap.

To this end, notice that if we rewrite the integral on the right-hand side of the equation using integration by
parts, we obtain:

u = f(x+ a) dv = dx

=⇒ u′ = f ′(x+ a) v = x+A

=⇒ F =

∫ ∆x

0
f(x+ a)dx = [(x+A)f(x+ a)]∆x0 −

∫ ∆x

0
(x+A)f ′(x+ a)dx.

Let’s expand the first term on the right-hand side:

[(x+A)f(x+ a)]∆x0 = [(∆x+A)f(∆x+ a)]− [(0 +A)f(0 + a)] =
f(a) + f(b)

2
(b− a).

Recall that ∆x = (b− a), so

[(∆x+A)f(∆x+ a)]− [(0 +A)f(0 + a)] = [((b− a) +A)f((b− a) + a)]−Af(a)

= [((b− a) +A)f(b)]−Af(a)

= A(f(b)− f(a)) + (b− a)f(b)

This looks very similar to the Trapezoidal Rule, and in fact we can choose A to make it identical to the
Trapezoidal Rule! Note that in the Trapezoidal Rule, the coefficient in front of f(a) must be (b − a)/2, so
A = (a− b)/2:

A(f(b)− f(a)) + (b− a)f(b) = (a− b)/2(f(b)− f(a)) + (b− a)f(b)

=
f(b) + f(a)

2
(b− a) = FTrap.

Thus the expression we have derived can be written

F =

∫ ∆x

0
f(x+ a)dx = FTrap −

∫ ∆x

0
(x+A)f ′(x+ a)dx,

where again, A = (a− b)/2. Thus the error in the Trapezoidal Rule approximation is given by

ETrap = −
∫ ∆x

0
(x+A)f ′(x+ a)dx,

but what does this mean?
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Let’s analyze this expression for ETrap more closely by integrating by parts again (expressions that cancel are
underbraced︸ ︷︷ ︸):

u = f ′(x+ a) dv = (x+A)dx = (x+A)d(x+A)

=⇒ u′ = f ′′(x+ a) v =
(x+A)2

2
+B∫ ∆x

0
f(x+ a)dx = FTrap −

[(
(x+A)2

2
+B

)
f ′(x+ a)

]∆x

0

+

∫ ∆x

0

(
(x+A)2

2
+B

)
f ′′(x+ a)dx

= FTrap −
[

(x+A)2

2
f ′(x+ a)

]∆x

0

−Bf ′(x+ a)|∆x0︸ ︷︷ ︸+

∫ ∆x

0

(
(x+A)2

2

)
f ′′(x+ a)dx+

Bf ′(x+ a)|∆x0︸ ︷︷ ︸ [Fund. Thm. of Calc.]

= FTrap −
[

(x+A)2

2
f ′(x+ a)

]∆x

0

+

∫ ∆x

0

(
(x+A)2

2

)
f ′′(x+ a)dx

= FTrap −
[
x2 + 2Ax+A2

2
f ′(x+ a)

]∆x

0

+

∫ ∆x

0

(
x2 + 2Ax+A2

2

)
f ′′(x+ a)dx

= FTrap −
[
x2 + 2Ax

2
f ′(x+ a)

]∆x

0

−A
2

2
f ′(x+ a)|∆x0︸ ︷︷ ︸

+

∫ ∆x

0

(
x2 + 2Ax

2

)
f ′′(x+ a)dx+

A2

2
f ′(x+ a)|∆x0︸ ︷︷ ︸ [Fund. Thm. of Calc.]

= FTrap −
[
x2 + 2Ax

2
f ′(x+ a)

]∆x

0

+

∫ ∆x

0

(
x2 + 2Ax

2

)
f ′′(x+ a)dx

Let’s plug this value of A = −(b− a)/2 = −∆x/2 back into the rest of the expression we derived above:∫ ∆x

0
f(x+ a)dx = FTrap −

[
x2 − 2[(b− a)/2]x

2
f ′(x+ a)

]∆x

0

+

∫ ∆x

0

(
x2 − 2[(b− a)/2]x

2

)
f ′′(x+ a)dx

= FTrap −
[
x2 − x∆x

2
f ′(x+ a)

]∆x

0

+

∫ ∆x

0

(
x2 − x∆x

2

)
f ′′(x+ a)dx

= FTrap −
[

∆x2 −∆x2

2
f ′(x+ a)

]
+ [0] +

∫ ∆x

0

(
x2 − x∆x

2

)
f ′′(x+ a)dx

= FTrap +

∫ ∆x

0

(
x2 − x∆x

2

)
f ′′(x+ a)dx

So the error term may be written:

ETrap =

∫ ∆x

0

(x
2

(x−∆x)
)
f ′′(x+ a)dx.
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For smooth f(x), it must be true that |f ′′(x + a)| < K between x = 0 and x = ∆x for some constant K, so a
suitable estimate for the magnitude of the error term is

|ETrap| . K

∣∣∣∣∫ ∆x

0

(x
2

(x−∆x)
)
dx

∣∣∣∣
=

K

2

∣∣∣∣x3

3
− x2

2
∆x

∣∣∣∣∆x
0

=
K

2

∣∣∣∣(∆x)3

3
− (∆x)2

2
∆x

∣∣∣∣
=

K

12
(∆x)3

= max
(
|f ′′in interval|

) (∆x)3

12

This expression tells us that the error in approximating the integrand as a linear function across the integration
interval should increase with the magnitude of the second derivative of the integrand over the integration bounds.
It also indicates that, all else being fixed, the error should decrease proportionally to (∆x)3.

9.1.2 The Extended Trapezoidal Rule

In practice we will use the Trapezoidal rule by dividing up the interval x ∈ [a, b] over more than just the endpoints.

For example, F =
∫ b
a f(x)dx can be divided into two intervals as follows:

F =

∫ b

a
f(x)dx =

∫ (a+b)/2

a
f(x)dx+

∫ b

(a+b)/2
f(x)dx

Then we apply the Trapezoidal rule to each of the integrals on the RHS. Let’s now imagine we’ve divided the
integral into N intervals and apply the Trapezoidal rule to each interval. Defining xN = b and x0 = a, we can
write:

F =

∫ b

a
f(x)dx ≈ f(xN ) + f(xN−1)

2
(xN − xN−1) +

f(xN−1) + f(xN−2)

2
(xN−1 − xN−2) + ...

+
f(x2) + f(x1)

2
(x2 − x1) +

f(x1) + f(x0)

2
(x1 − x0)

= f(xN )

(
xN − xN−1

2

)
+ f(xN−1)

(
xN − xN−2

2

)
+ ...+ f(x1)

(
x2 − x0

2

)
+ f(x0)

(
x1 − x0

2

)

Thus if the function is sampled evenly at points xi, we can quickly rewrite this expression in terms of xi−xi−1 =
∆x:

F =

∫ b

a
f(x)dx ≈ ∆x

(
f(x0)

2
+ f(x1) + f(x2) + ...+ f(xN−2) + f(xN−1) +

f(xN )

2

)
This is known as the Extended Trapezoidal Rule.

Based on our derivation of the error in the Trapezoidal Rule, we may define the error in each individual interval
as

Einterval = ||f ′′in single interval||
(∆x)3

12
,

where ||f ′′in single interval|| is a representative magnitude of the second derivative of the integrand over a single interval,
we can write the error for the whole integral, divided up into N intervals as

Etot,Trap . N max
(
||f ′′in single interval||

) (∆x)3

12
.
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Note that ∆x = (b− a)/N , so we get

Etot,Trap . max
(
||f ′′in single interval||

) (b− a)3

12N2

for the Extended Trapezoidal Rule.
This means that as we increase the number of intervals, the error drops in proportion to 1/N2, or equivalently,

in proportion to N(∆x)3. We must be careful when estimating the error this way, as |f ′′| will in general vary from
interval to interval. However, in practice we will find that the f ′′ term will quickly asymptote to nearly a constant
value as we increase N , meaning that Etot,Trap will, to good approximation, be proportional to 1/N2.

Exercise #1:

Evaluate the exact value of the integral ∫ 1

0

ln(1 + y)dy,

using variable substitution and integration by parts. Using a calculator, evaluate the final expression you obtain to 15
significant digits.

SolutiontoExercise#1

Letx=1+y.Thenthisintegralisequalto∫2

1ln(x)dx.
IntegrationbypartsisderivedimmediatelyfromtheProductRule:

Productrule:(u(x)v(x))′=u′(x)v(x)+u(x)v′(x)

=⇒∫b

a

u(x)v′(x)dx=∫b

a

(u(x)v(x))′dx−∫b

a

u′(x)v(x)dx

=⇒∫b

a

u(x)v′(x)dx=[u(x)v(x)]
b
a−∫b

a

u′(x)v(x)dx

Choosing

u(x)=ln(x)v′(x)dx=dx

u′(x)=1/(x)v(x)=x,

weget

∫2

1

ln(x)dx=[xlnx]
2
1−∫2

1

(x)/(x)dx

=[xlnx]
2
1−(2−1)=2ln(2)−1ln(1)−1=0.386294361119890...

Exercise #2:

Compute the integral ∫ 1

0

ln(1 + y)dy

using the Trapezoidal rule with 1, 2, and 4 evenly-spaced intervals. Compare the result with the exact solution
computed in the previous exercise. Use ln(ab) = ln a+ ln b to rewrite all logarithms as logarithms of integers.
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SolutiontoExercise#2

WestartbyevaluatingtheintegralusingtheTrapezoidalrulewithoneinterval:

∫b

a

f(y)dy≈
f(a)+f(b)

2
(b−a)

=
ln(1)+ln(1+1)

2
(2−1)

=ln(2)/2=0.34657359027997...

Twointervalsnow:

∫b

a

f(y)dy=∫c

a

f(y)dy+∫b

c

f(y)dy

≈
f(a)+f(c)

2
(c−a)+

f(c)+f(b)

2
(b−c)

=
ln(1)+ln(3/2)

2
(3/2−1)+

ln(3/2)+ln(2)

2
(2−3/2)

=
ln(3)−ln(2)

4
+

ln(3)−ln(2)+ln(2)

4

=
ln(3)−ln(2)

2
+

ln(2)

4
=0.37601934919407...

Fourintervalsnow:Evaluatef(y)aty=1,1.25,1.5,1.75,2

∫b

a

f(y)dy=∫c

a

f(y)dy+∫d

c

f(y)dy+∫e

d

f(y)dy+∫b

e

f(y)dy

∫2

1

f(y)dy=∫(5/4)

1

f(y)dy+∫(3/2)

(5/4)

f(y)dy+∫(7/4)

(3/2)

f(y)dy+∫2

(7/4)

f(y)dy

≈
ln(1)+ln(5/4)

2
(1/4)+

ln(5/4)+ln(3/2)

2
(1/4)

+
ln(3/2)+ln(7/4)

2
(1/4)+

ln(7/4)+ln(2)

2
(1/4)

=
ln(5)−ln(4)

8
+

ln(5)−ln(4)+ln(3)−ln(2)

8

+
ln(3)−ln(2)+ln(7)−ln(4)

8
+

ln(7)−ln(4)+ln(2)

8

=
ln(5)−ln(4)

4
+

ln(3)−ln(2)

4
+

ln(7)−ln(4)

4
+

ln(2)

8

=
ln(5)−2ln(2)

4
+

ln(3)−ln(2)

4
+

ln(7)−2ln(2)

4
+

ln(2)

8
=0.38369950940944...

Let’s now analyze results from the previous Exercises in tabular form:

N Result Error Error Improvement factor Relative to N = 1

1 0.34657359027997 10.3% 1
2 0.37601934919407 2.66% 3.9x
4 0.38369950940944 0.672% 15.3x

Exact 0.38629436111989 - -

Thus we have shown that as N increases, the error drops nearly proportionally to 1/N2. Why is the propor-
tionality not exact?
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9.2 Simpson’s Rule

Our goal in this chapter is to compute

F =

∫ b

a
f(x)dx

numerically. We have already examined the case in which the integral is split into many intervals, the function
approximated in each by a line connected by the endpoints of each interval.

Definition: Simpson’s rule samples f(x) at points a, (a + b)/2, and b, fits the function evaluated at these
three points to a parabola, and then approximates the integral F as the area under this parabola. Simpson’s rule
FSimp can be written as:

F =

∫ b

a
f(x)dx = FSimp + ESimp

= (b− a)

[
1

6
f(a) +

2

3
f

(
a+ b

2

)
+

1

6
f(b)

]
+ ESimp

where ESimp is the error term. In this case it can be shown that

ESimp . max
(
||f (4)

in single interval||
) (∆x)5

90
.

In Simpson’s rule, we evaluate the function at three points in the interval from a to b: at a, b, and the midpoint
(a+ b)/2. So ∆x, the spacing between function evaluations, is simply equal to (b− a)/2. Thus Simpson’s rule may
be written as:

F =

∫ b

a
f(x)dx =

∆x

3

[
f(a) + 4f

(
a+ b

2

)
+ f(b)

]
+ ESimp

Just as we did with the Trapezoidal rule, we can break up the integral∫ b

a
f(x)dx =

∫ (a+b)/2

a
f(x)dx+

∫ b

(a+b)/2
f(x)dx

into two equally-spaced pieces and apply the Simpson’s rule to each piece. Here we have divided the integral into
two integrals.

For a single interval, we must evaluate the function at 3 points using Simpson’s rule. For two intervals, this
increases to 5 (notice that we do not double-count the point at x = (a + b)/2). Continuing the pattern, for N
Simpson’s rule intervals, we will have a total of (2N+1) function evaluations, at x = x0,x = x1 = x0+∆x,...x = xN .

Let’s use this form to now divide the integral up over an arbitrary number of intervals, giving us:∫ b

a
f(x)dx =

∆x

3
[(f(x0) + 4f(x1) + f(x2)) + (f(x2) + 4f(x3) + f(x4)) + (f(x4) + 4f(x5) + f(x6)) + ...] +NESimp

=
∆x

3
(f(x0) + 4f(x1) + 2f(x2) + 4f(x3) + 2f(x4) + ...) +NESimp

Notice the alternating pattern.
So long as we have minimally sampled the integrand f(x) (i.e., we are not under-samping features of the

function), the error over a single interval ESimp will drop approximately in proportion to (∆x)5. I.e., ESimp
∝∼ (∆x)5.

So the overall error in our integral when divided over N intervals using Simpson’s rule, will satisfy Etot,Simp
∝∼

(∆x)5 × N . Since the distance between sampling points for N intervals of Simpson’s rule is given by ∆x =
(b − a)/(2N) (or equivalently 2N + 1 function evaluations), we find that Etot,Simp

∝∼ 1/N4 for the extended
Simpson’s rule.
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9.3 Code Validation Checks

If we are applying the Trapezoidal rule to a function f(x) for which we have chosen a sufficiently large value of in-
tervals N to avoid under-sampling f(x), then the weighted average of ||f ′′(x)|| over an interval can be approximated
by some constant K and the exact value of the integral F at a given value of N is

F = Fa +K/N2,

where Fa is the approximate value of the integral using the Extended Trapezoidal Rule with N intervals. Note that
since ∆x = (b− a)/N , we can rewrite this expression as

F = Fa +K ′(∆x)2,

where K ′ = K/(b− a)2.
So after evaluating the integral, Fa and ∆x are known, but K ′ and F are unknown. Thus we can solve for F

by computing values of Fa with two values of ∆x.
Suppose you have programmed an Extended Trapezoidal Rule numerical integration routine. You know that for

smooth functions with any “bumps” resolved at least at the Nyquist sampling rate, your integral should converge
to the exact value, approximately proportionally to (∆x)2.

When solving mathematical problems on the computer, it is always our task to perform code validation tests,
to demonstrate to ourselves and our colleagues that our codes do not have bugs, and in fact we have programmed
the algorithms correctly. Thus it is your solemn duty to verify that indeed your error is very nearly proportional to
(∆x)2. If our code satisfies this test, we can say that “our code converged to second order in the interval spacing
(∆x)”.

After programming a routine that must converge to second order, we are obligated to solve

F = Fa +K ′(∆x)n

for unknowns F , K ′, and n. Remember that this equality is only approximate, as it assumes higher-order errors are
negligible, and that truncation error dominates. To solve for these three unknowns, we must perform three numerical
integrations to get known values Fa at three known ∆x values. Let’s solve for these three, using resolutions ∆x1,
∆x2, and ∆x3. Suppose also that, as in our example, ∆x2 = ∆x1/2 and ∆x3 = ∆x1/4:

F = Fa,1 +K ′(∆x1)n (9.3)

F = Fa,2 +K ′(∆x1/2)n (9.4)

F = Fa,3 +K ′(∆x1/4)n (9.5)

First let’s solve for n. Subtract Eq. 9.4 from Eq. 9.3:

0 = Fa,1 − Fa,2 +K ′[(∆x1)n − (∆x1/2)n]

=⇒ Fa,1 − Fa,2 = −K ′∆xn1 [1− (1/2)n]

Similarly, subtracting Eq. 9.5 from Eq. 9.4:

0 = Fa,2 − Fa,3 +K ′[(∆x1/2)n − (∆x1/4)n]

=⇒ Fa,2 − Fa,3 = −K ′∆xn1 [(1/2)n − (1/4)n].

Combining these expressions, we find

Fa,1 − Fa,2
Fa,2 − Fa,3

=
1− (1/2)n

(1/2)n − (1/4)n

=
1− (1/2)n

(1/2)n(1− (1/2)n)
= 2n.
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So if we have correctly programmed a second-order method, then n = 2 and we should find that

Fa,1 − Fa,2
Fa,2 − Fa,3

= 22 = 4

We will use this value as a check on the consistency of our method. If this ratio is found to be far from 4, there
are at least three possible reasons:

1. There may be a bug in our code,

2. We are under-sampling the function (aliasing error), or

3. We chose a ∆x so tiny that, e.g., Fa,1 − Fa,2 results in a catastrophic cancellation (roundoff error/loss of
significance).

All of these reasons can be easily checked via careful analysis of the code and a back-of-the-envelope estimate.

9.4 Richardson Extrapolation

Recall in our Extended Trapezoidal Rule example, as we increased N , the value we computed for the integral
monotonically approached the exact value of the integral. Richardson extrapolation is the strategy of using known
values of the integral with finite N and nonzero ∆x and extrapolating the results to compute an estimate for the
integral in the limits N →∞, or equivalently ∆x→ 0. But how do we do this? In particular, how do we do this if
we do not know the exact value?

Let’s use the technique of the previous section to assume that our method is consistent with n = 2 and proceed
to solve for F , the “exact” value of the integral:

Eq 1 gives:

K ′ =
F − Fa,1
(∆x1)2

Plugging this into Eq 2 we get:

F = Fa,2 + (F − Fa,1)
(∆x1/2)2

(∆x1)2

= Fa,2 + (F − Fa,1)/4

=⇒ 3

4
F = Fa,2 − Fa,1/4

=⇒ F =
1

3
(4Fa,2 − Fa,1)

Let’s now compute this value for F in our example problem:

F =
1

3
(4Fa,2 − Fa,1)

=
1

3
(4× 0.37601934919407− 0.34657359027997)

= 0.38583460216544,

which is 0.119% from the exact value! Recall that the value we obtained using the Trapezoidal rule to evaluate the
function at 5 points (4 intervals) had an error of 0.672%. Thus the value obtained from Richardson extrapolation
of a total of three function evaluations, is significantly closer to the exact value than using the Trapezoidal rule to
evaluate the function at five points!

This is because

1

3
(4Fa,2 − Fa,1) =

1

3

[
4

∆x

2

(
f(a)

2
+ f(c) +

f(b)

2

)
−∆x

f(a) + f(b)

2

]
=

∆x

3

[
f(a)

2
+ 2f(c) +

f(b)

2

]
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Which is exactly Simpson’s rule! So by performing this Richardson extrapolation, we have effectively increased
the order of our integration from 1/N2 to 1/N4. But remember that we assumed the exact value of the integral
satisfies

F = Fa,i +K ′(∆xi)
n

So why did we not obtain the exact value of the integral? Recall from our derivation of the error in the Trapezoidal
Rule, K ′ is not a constant; instead it is equal to an integral whose integrand contains the second derivative of the
function over the integration interval. K ′ in a given interval will in general depend on f ′′ and ∆x. What we’ve
found here is that effectively we can rewrite K ′ as

K ′ = K̃ + K̂(∆x)2,

so that we can rewrite (in the case of the Trapezoidal Rule) F as

F = Fa +K ′(∆x)2

= Fa + K̃(∆x)2 + K̂(∆x)4.

A Richardson extrapolation effectively solves for K̃, giving us the exact value of F to error proportional to (∆x)4

9.5 Romberg Integration

Richardson extrapolation can be used to obtain even more accurate values for the integral as the number of intervals
is increased. The general algorithm is called Romberg integration, which is as follows.

Define

R(n = 0,m = 0) =
1

2
(b− a)(f(a) + f(b)).

Notice that R(0, 0) is simply the expression for the integral as approximated by the Trapezoidal Rule. Suppose we
divide the integral up into two equal intervals a la∫ b

a
f(x)dx =

∫ (a+b)/2

a
f(x)dx+

∫ b

(a+b)/2
f(x)dx.

Now repeat this n times. Then

(∆x)n =
b− a

2n
.

So n > 0 for the Extended Trapezoidal Rule (i.e., the Trapezoidal Rule such that the original integral is broken
into multiple, equally-spaced and non-overlapping integrals), which may be written:

R(n,m = 0) =
1

2
R(n− 1, 0) + (∆x)n

2n−1∑
k=1

f(a+ (2k − 1)(∆x)n).

Defining Nf to be the number of function evaluations for the Extended Trapezoidal Rule, if we only evaluate
the function at the endpoints a and b, then Nf = 2 and

∆x = (b− a).

Similarly, if we evaluate the function at the endpoints and the midpoint, then Nf = 3 and

∆x = (b− a)/2.

To establish the pattern, if we evaluate the function at the endpoints, (b − a)/4, (b − a)/2, and 3(b − a)/4, then
Nf = 5 and

∆x = (b− a)/4.

Clearly the pattern is that when we evaluate the function at Nf evenly-spaced sampling points ∆x,

∆x =
b− a
Nf − 1

. (9.6)
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Although this discussion focuses on the m = 0 case, the distance between uniform sampling points ∆x will satisfy
Eq. 9.6 regardless of the integration rule given by m.

Recall that our numerical integration algorithms rely on first fitting a polynomial to the integrand f(x). In
Romberg integration, the degree of the polynomial is given by m+ 1.

Therefore, m is related to the convergence order of the method as the number of intervals and function evalua-
tions increases. Recall that the extended trapezoidal rule (corresponding to linear polynomial fits to the function at
sample points xi) possessed an error approximately proportional to (∆x)2 and the extended Simpson’s rule (corre-
sponding to quadratic polynomial fits to the function at sample points xi) (∆x)4. Extending this to arbitrary order
polynomial rules, the error of the Romberg integral approximation, ERomb(n,m), is approximately proportional to
(∆xn)2m+2, provided that the integrand f(x) is at least minimally (i.e., Nyquist) resolved.

Thus in the case of Romberg integration, the error ERomb(n,m) satisfies the approximate proportionality

ERomb(n,m) ∝∼ (∆xn)2m+2 ∝ 1/(Nf − 1)2m+2.

Notice that m = 0 for the Trapezoidal Rule, and the number of trapezoidal intervals N is equivalent to Nf − 1,
the error indeed is approximately proportional to 1/N2.

Exercise #3:

How are the number of intervals N related to Nf for the Extended Simpson’s Rule?

SolutiontoExercise#3

N=1correspondstoNf=3,N=2correspondstoNf=5,N=3correspondstoNf=7,soN=xcorrespondsto
Nf=(2x+1).ThusNf−1=2NfortheExtendedSimpson’sRule.

As proven in Exercise #3, for the Extended Simpson’s Rule Nf − 1 = 2N , so we find that

ESimp,tot
∝∼ (∆xn)2m+2 ∝ 1/(Nf − 1)2m+2 ∝ 1/N2m+2 = 1/N4,

consistent with what we found previously.
We wish to get the best, Richardson-extrapolated estimate. To complete our definition of Romberg integration,

we simply combine the above definitions for R(0, 0), R(n, 0), with the formula:

R(n,m) = R(n,m− 1) +
1

4m − 1
(R(n,m− 1)−R(n− 1,m− 1)),

where n ≥ m. Note that this can be rewritten in an equivalent form:

R(n,m) =
1

4m − 1
(4mR(n,m− 1)−R(n− 1,m− 1)) .

Exercise to reader: Prove this.

Exercise #4:

To what integration rule does R(n,m) = R(1, 0) correspond? Apply the Romberg integration formula to write the full
integration rule.

73



SolutiontoExercise#4

R(n,m)=R(1,0)correspondstotheExtendedTrapezoidalRuleforthreepoints:

R(n=1,m=0)=
1

2
R(0,0)+(∆x)1

2
1−1
∑
k=1

f(a+(2k−1)(∆x)1)

=
1

4
(b−a)(f(a)+f(b))+

b−a
2

f(a+(b−a)/2)

=
1

4
(b−a)(f(a)+f(b))+

b−a
2

f(a+b

2

)
=

b−a
2

[f(a)

2
+f(a+b

2

)+
f(b)

2

].

Exercise #5:

To what integration rule does R(n,m) = R(1, 1) correspond? Apply the Romberg integration formula to write the full
integration rule.

SolutiontoExercise#5

R(1,1)isSimpson’sRule:

R(1,1)=R(1,0)+
1

41−1
(R(1,0)−R(0,0))

=
b−a

2

(f(a)

2
+f(a+b

2

)+
f(b)

2

)
+

1

3

[b−a
2

(f(a)

2
+f(a+b

2

)+
f(b)

2

)−1

2
(b−a)(f(a)+f(b))]

=
b−a

2

[(f(a)+f(b))(1

2
+

1

6
−

1

3

)+f(a+b

2

)(1+
1

3

)]
=

b−a
2

1

3

[f(a)+4f(a+b

2

)+f(b)]
We conclude that R(n, 0) is the Extended Trapezoidal Rule (for n > 0), R(n, 1) is the Extended Simpson’s

Rule (for n > 1), and R(2, 2) is a 1/N6-convergent approximation called Boole’s Rule. Notice that each step in
this sequence yields the highest-degree polynomial fit to the integrand.
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MATH 521, Fall 2018 Notes

Prof. Zachariah B. Etienne

Chapter 10: Iterative Techniques, Numerical Root Finding

Iterative techniques in numerical analysis cover a large class of approaches for solving mathematical problems,
which can be generally described with the formula

xi+1 = g(xi),

where xi is the solution vector (i.e., the solution to our mathematical problem) at iteration i, and g is some function
that reads the solution vector at iteration i and outputs the solution vector at iteration i+1. To implement iterative
techniques, we first define g(xi), so that once an initial guess x0 for the solution is made, the solution at iteration
i = 1 is given by evaluating g(x0). In the same way, the solution at iteration i = 2 is obtained by evaluating
g(x1). The process repeats the same way for i = 3 and so forth until some algorithmic stopping condition (i.e., the
condition under which we wish to no longer evaluate xi+1) is satisfied.

Sometimes the solution vector at finite i represents an approximate solution, where the exact solution will only
be obtained in the i→∞ limit. This is generally the case for Numerical Root Finding—the topic of this chapter.
In this case the algorithmic stopping condition might be the iteration at which xj+1 is the same as xj to some
prescribed number of significant digits.

Alternatively, xi might represent the solution at a different point in space or time–for example solutions to
ordinary differential equations can be written as an iterative scheme where xi might represent the approximate
solution at some time i. In such a case, the algorithmic stopping condition will be an iteration corresponding to
some final time tf beyond which we are no longer interested in evaluating the solution.

The Root Finding problem: Solve
f(x) = 0

for vector function f and vector x, such that given a component of the vector xi, there are N unknown components
xi and a total of N independent functions fi’s that relate the xi’s to one another (i.e., N independent equations of
N unknowns).

While the familiar equation Ax − b = 0 certainly fits this pattern, with A an N × N matrix and b a vector
comprised of constants independent of xi’s, this is only one particular example of the overall pattern f(x) = 0.
Namely, Ax− b = 0 only holds for functions f(x) that consist of linear combinations of the xi’s. Thus Numerical
Root Finding can be interpreted as a strategy for solving a wider class of equations beyond those we studied in the
previous section on numerical linear algebra (i.e., solving Ax − b = 0 for x), including those sets of equations in
which the fi’s depend nonlinearly on the xi’s.

There may be many solutions x to the set of equations f(x) = 0, and these solutions are called roots; our
goal is to find them numerically. There are a variety of algorithms for finding roots of vector functions of multiple
variables, but they generally build upon and extend strategies for finding roots of functions of a single variable
f(x) = 0.

So we will focus first on a set of algorithms that solve f(x) = 0, where f is a function of a single variable x.

Exercise #1:

Consider
f(x) = 6x6 − 4x2 − 1.

How many roots will this function have and why?

SolutiontoExercise#1

ThefundamentaltheoremofalgebrastatesthatanNth-degreepolynomialwillhaveNroots,wheretherootsare
possiblyamixtureofrealandimaginary,andsomemayberepeatedroots.Thusthissixth-orderpolynomialwillhave
atotalof6roots
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In this section, we will generally focus on functions that are continuous everywhere, because if a function does
not satisfy this criterion, the root may be very difficult or impossible to find. Consider for example the limiting case
of a function f(x) that maps x to a random number R ∈[-1e15:1e15]. In this case, no strategy will be superior
than a random search for roots along x, with only an infinitesimal chance of ever finding a true zero.

For continuous functions, we can do much better than a random search, and in general, the smoother the
function, the faster we can converge on a root.

10.1 Bisection Method

The Bisection Method is a so-called “bracketing” method, in that you must first feed it two values of x, called, say
a and b such that a < b, (f(a)f(b)) < 0. If the function is continuous, we are then guaranteed that there exists an
r ∈ (a, b) such that f(r) = 0.

Bisection finds the root by first evaluating f(x) at x0 = (a+b)/2. For example, if f(x0) < 0 and (f(a)f(x0)) < 0,
then we know that r ∈ (a, x0), so next we evaluate f(x) at x1 = (a + x0)/2. If for example, f(x1) > 0 then we
know r ∈ (x1, x0). We continue this process until we have found an x that is within roundoff error of f(x) = 0.
Note that roundoff error and machine epsilon are in general two different quantities! Roundoff error appears due to
the growth of rounding in floating point operations. For example, if when evaluating f(x), we have a catastrophic
cancellation, then due to roundoff error, f(x) might hover around 1e-8 without ever hitting zero. To avoid this,
in the pseudocode below, we set NMAX to limit the number of iterations over which we bisect the interval.

The pseudocode for the Method of Bisection is as follows

Pseudocode for Bisection Method:

1 x1=a

2 x2=b

3 y1=f(x1)

4 y2=f(x2)

5 if(y1*y2)>=0) then

6 print "Bracketing error!"

7 exit program

8 end if

9 do i=1,NMAX

10 x_midpoint = (x1+x2)/2

11 y_midpoint = f( x_midpoint )

12 if(y_midpoint*y1 < 0) then

13 x2=x_midpoint

14 y2=y_midpoint

15 else

16 x1=x_midpoint

17 y1=y_midpoint

18 end if

19 if( | x2-x1 | < epsilon*(|x1|+|x2|*0.5) or y_midpoint == 0 ) then

20 exit loop

21 end if

22 if( i == NMAX ) then

23 print "Warning: Hit i=NMAX iterations. Result may not be converged!"

24 end if

25 end do

26 # The root lies somewhere between x1 and x2.

27 root=x_midpoint # Let’s choose x_midpoint. This way, if y_midpoint=0,

28 # then we choose the exact location of the root.

Notice that in line 19, epsilon is defined so that the error in the root (variable root) is some small percentage
of the actual root. This is most apparent if we rewrite line 19 as

|x2 − x1|
(|x2|+ |x1|)/2

< Erel = ε.

In this way, we see that epsilon is a measure of the relative error.
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How fast does the Bisection Method converge to the actual root? In other words, after how many iterations
over i can we expect to obtain the root?

We start with two points a and b such that the root r is guaranteed to exist within the interval r ∈ (a, b), and
we know that at each step, we are dividing the interval in two. Thus when we go from iteration i to iteration i+ 1,
the maximum distance to the root from either endpoint of our bracket will at worst nearly halve. Defining the
maximum distance to the root at iteration i to be εi, in the worst-case scenario we will find that:

εi+1 ≈
εi
2
.

As an example, one possible worst-case (slowest-converging) scenario for the bisection method will be the case
in which the root is at r = a+ δ, where δ > 0 is vanishingly small.

In this worst-case scenario, ε0 = (b− a)− δ ≈ (b− a) will be our initial maximum distance to the root. Then to
find the root to a distance ε or less, how many iterations are needed? Clearly from the above expression εi+1 ≈ εi

2 ,
we get εi ≈ ε0

2i
, and we want this to be less than or equal to ε:

εi ≈
ε0
2n

. ε

=⇒ ε0
ε

. 2n

=⇒ log2

ε0
ε

. n.

In the worst-case scenario r = a+ δ, ε0 ≈ (b− a), so in this case,

log2

(b− a)

ε
. i.

For bisection, the maximum distance to the root at iteration i + 1 is given by εi+1 ≈ εi
2 , which satisfies the

pattern
εi+1 ≈ constant× (εi)

m,

where m = 1. In cases for which m = 1, we say that the method converges linearly. This notation may seen a bit
strange, since the distance to the root (and thus the error) drops by a factor of 2 at each iteration, but we will find
that there exist root-finding methods that converge quadratically; i.e., with m = 2.

Other root finding methods that converge with m > 1 are generally less robust; i.e., more prone to convergence
problems. When such problems arise, this bisection approach is often adopted as a backup algorithm. Thus the
strength of bisection is its robustness; it only requires that the endpoints bracket the root and the function be
continuous. If these conditions are met, then bisection will be guaranteed to find the root. The drawback of using
bisection is its slowness to converge on the root, due to the fact that it converges linearly.

10.2 Secant Method

As our first example of a root-finding method with m > 1 convergence, let’s explore the Secant Method, with
convergence m ≈ 1.618. As we will find, the Secant Method requires that the underlying function f(x) be smooth
(twice differentiable) in order to achieve convergence, and even if it is smooth, there is no guarantee of convergence.

Unlike the Bisection Method, the Secant Method does not require that we “bracket” a root. What follows is a
possible implementation of the Secant Method algorithm:

1. Pick two arbitrary points x = a and x = b such that a 6= b and f(a) 6= f(b). Define x1 = a if |f(a)| < |f(b)|.
Otherwise define x1 = b.

2. Draw the line that connects f(a) and f(b). (The line that passes through two points on a curve is known
as the secant line.) So long as f(a) 6= f(b), this line is guaranteed to pass through zero, and where it passes
through zero is our next guess x2. Set i=1.

3. Draw the line connecting f(xi) and f(xi+1). Define where this line crosses zero as x = xi+2.

4. If |xi+2 − xi+1| ≤ ε(|xi+2|+ |xi+1|)/2, where ε is the maximum relative error we are willing to tolerate, then
exit the algorithm. Otherwise set i=i+1 and Go to 3.
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The top plot in Fig. 10.1 illustrates the Secant Method.
Note that if xi and xi+1 occur such that f(xi+1) ≈ f(xi) (i.e., the slope of the Secant Method line approaches

zero), then the next step may result in the next guess for the root being very, very far away. It is therefore possible
for this root finder to diverge to x→ ±∞ even for smooth functions. We must also be careful for situations where
f(xi) and f(xi−1) differ by many orders of magnitude; in this case catastrophic cancellation can occur. Generally,
we will only observe m ≈ 1.618 convergence in the neighborhood x ∈ (a, b) where f(x) is approximately linear.

10.2.1 Derivation of Secant Method

Based on the above algorithm, given f(x) at two points xi and xi−1, xi+1 is the place where the line connecting
f(xi) and f(xi−1 crosses zero. Call the equation for this line `(x). Then

`(xi) = f(xi) = mxi + b

`(xi−1) = f(xi−1) = mxi−1 + b

=⇒ `(xi+1) = 0 = mxi+1 + b =⇒ xi+1 = − b

m
.

The slope of the line is trivial:

m =
f(xi)− f(xi−1)

xi − xi−1
,

and the y-intercept can be immediately derived from the top equation above:

f(xi) = mxi + b =⇒ b = f(xi)−mxi.

Then the Secant Method is given by

xi+1 = − b

m
= −f(xi)−mxi

m
= xi −

xi − xi−1

f(xi)− f(xi−1)
f(xi)

10.2.2 Derivation of Secant Method Error

Our goal is to find m such that for the Secant Method, the error at iteration i+ 1, εi+1, satisfies

εi+1 ≈ constant× (εi)
m.

We derived above the Secant Method is given by

xi+1 = xi −
xi − xi−1

f(xi)− f(xi−1)
f(xi).

If we are near a root r, then we can define the error εi in our estimate xi via

εi = xi − r.

This implies that

εi+1 = xi+1 − r

=

(
xi −

xi − xi−1

f(xi)− f(xi−1)
f(xi)

)
− r

=

(
xi −

xi − xi−1

f(r + εi)− f(r + εi−1)
f(r + εi)

)
− r

= xi − r −
xi − xi−1

f(r + εi)− f(r + εi−1)
f(r + εi)

= εi −
xi − xi−1

f(r + εi)− f(r + εi−1)
f(r + εi).

Notice also that
xi − xi−1 = (εi + r)− (εi−1 + r) = εi − εi−1,
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so we have

εi+1 = εi −
εi − εi−1

f(r + εi)− f(r + εi−1)
f(r + εi)

= εi

(
1− f(r + εi)

f(r + εi)− f(r + εi−1)

)
+ εi−1

f(r + εi)

f(r + εi)− f(r + εi−1)

=
εi (f(r + εi)− f(r + εi−1)− f(r + εi)) + εi−1f(r + εi)

f(r + εi)− f(r + εi−1)

=
−εif(r + εi−1) + εi−1f(r + εi)

f(r + εi)− f(r + εi−1)

Assuming that f(x) is twice-differentiable, we can expand the f(r+ ε) terms about ε = 0 using a Taylor series:

f(r + εi) = f(r) + f ′(r)εi +
1

2!
f ′′(r)ε2i + ...

= f ′(r)εi +
1

2!
f ′′(r)ε2i + ...

since r is by definition a root of f , so f(r) ≡ 0.
Define the Taylor expansion of f(r + εi) to second order as Ti:

Ti = f ′(r)εi +
1

2!
f ′′(r)ε2i

Then our expression for εi+1 can be written, to second order in ε:

εi+1 =
−εiTi−1 + εi−1Ti

Ti − Ti−1

= −εi
f ′(r)εi−1 + 1

2!f
′′(r)ε2i−1

Ti − Ti−1
+ εi−1

f ′(r)εi + 1
2!f
′′(r)ε2i

Ti − Ti−1

=
−f ′(r)εiεi−1 − εi 1

2!f
′′(r)ε2i−1 + f ′(r)εiεi−1 + 1

2!f
′′(r)εi−1ε

2
i

Ti − Ti−1

=
1
2!f
′′(r)(εi−1ε

2
i − εiε2i−1)

Ti − Ti−1
= εiεi−1

1
2!f
′′(r)(εi − εi−1)

Ti − Ti−1

Next we analyze the denominator:

Ti − Ti−1 = f ′(r)(εi − εi−1) +
1

2!
f ′′(r)(ε2i − ε2i−1)

= f ′(r)(εi − εi−1) +
1

2!
f ′′(r)(εi − εi−1)(εi + εi−1)

= (εi − εi−1)

(
f ′(r) +

1

2!
f ′′(r)(εi + εi−1)

)

Thus the (εi − εi−1) cancel in the numerator and denominator, leaving us with

εi+1 = εiεi−1

1
2!f
′′(r)

f ′(r) + 1
2!f
′′(r)(εi + εi−1)

= εiεi−1

1
2!f
′′(r)

f ′(r) +O(ε)
≈ εiεi−1

f ′′(r)

2f ′(r)

Let’s return to our goal. Namely, we are to find m such that

|εi+1| ≈ |K × (εi)
m|,

where K is some constant.
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In order for this to hold, we must have∣∣∣∣εiεi−1
f ′′(r)

2f ′(r)

∣∣∣∣ ≈ |K × (εi)
m|

|εiεi−1D| ≈ |K × (εi)
m|

|εi−1| ≈
∣∣∣∣KD
∣∣∣∣× (εi)

m−1|

=⇒ |εi| ≈
∣∣∣∣KD
∣∣∣∣× (εi+1)m−1|

=⇒ |εi+1| ≈

∣∣∣∣∣
(
D

K

)1/(m−1)
∣∣∣∣∣× |(εi)1/(m−1)|

≈ |K × (εi)
m|.

Since K and D are constants, the above expression can only hold if

m =
1

m− 1
=⇒ m2 −m− 1 = 0 =⇒ m =

1 +
√

5

2
= 1.61803...,

the Golden Ratio!

10.3 False Position or Regula Falsi Method

The Method of False Position is, like the Bisection Method, a bracketing method. However, like the Secant Method,
it makes use of Secant lines and thus requires that functions be second-differentiable. False Position is more robust
than the Secant method, as it will never encounter the case in which the slope of the line is zero.

One implementation of the False Position algorithm is as follows:

1. Choose x = a and x = b such that (f(a)f(b)) < 0, a < b.

2. Draw the line that connects f(a) and f(b). So long as f(a) 6= f(b), this line is guaranteed to pass through
zero, and where it passes through zero is our next guess x1.

(a) If (f(a)f(x1)) < 0 then set b = x1.

(b) If (f(x1)f(b)) < 0 then set a = x1.

3. If |a − b| ≤ ε(|a| + |b|)/2, where ε is the maximum relative error we are willing to tolerate (note that |a − b|
denotes the size of our interval), then exit the algorithm. Otherwise Go to 2.

So suppose f(a) < f(x1) < f(b) and f(a)f(x1) < 0. Then, so long as the function f(x) is continuous, we know
a root exists between a and x1. The False Position method will always choose the next point such that the function
is positive on one side of the bracket and negative on the other side. This choice will typically result in slower
convergence than the Secant Method, and in fact False Position converges at a rate that is linear, but faster than
bisection.

The bottom plot in Fig. 10.1 illustrates the False Position method.

10.4 Newton-Raphson Method

We’ll find that the Newton-Raphson Method for finding roots is the most efficient method yet discussed, but
requires that the function f(x) and its derivative f ′(x) be evaluated at arbitrary x. Like the Secant method, it
does not require bracketing, but unlike Secant, only requires one point for an initial guess.

Suppose our current guess for a root is x, and suppose our actual root is at r = x + δ. What should our next
guess be? The Newton-Raphson Method addresses this question using a Taylor expansion of f(x+ δ):

f(x+ δ) = f(x) + f ′(x)δ +
f ′′(x)

2!
δ2 + ...
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Figure 10.1: Secant/False Position. Figures from Numerical Recipes in C, Second Edition, Press, Teukolsky,
Vetterling, and Flannery. Cambridge University Press, 1999.
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For small δ, we can write
f(x+ δ) ≈ f(x) + f ′(x)δ.

Thus if f(x+ δ) is our root, then we can immediately get a good approximation for the distance we should move
from some guess x nearby by evaluating the right-hand side of the below expression:

δ = − f(x)

f ′(x)
.

So Newton-Raphson starts with some guess x0. f(x0) and f ′(x0) are evaluated, and the next guess x1 = x0 + δ,

where δ is simply the distance δ = − f(x0)
f ′(x0) .

Source: https://en.wikipedia.org/wiki/Newton%27s_method#Practical_considerations

What is the rate of convergence for Newton-Raphson? Well, suppose we have a root at r (i.e., f(r) = 0) and
f is twice differentiable in the neighborhood of r. Let’s Taylor expand f(r) about xi, our guess for the root at
iteration i:

f(r) = 0 = f(xi) + f ′(xi)(r − xi) +
f ′′(xi)(r − xi)2

2!
+ ...

Assume that the higher-order terms are negligible. Then divide both sides by f ′(xi):

f(xi)

f ′(xi)
+ (r − xi) ≈

−f ′′(xi)
2f ′(xi)

(r − xi)2

Recall that the Newton-Raphson formula is:

xi+1 = xi −
f(xi)

f ′(xi)
=⇒ (r − xi+1) = (r − xi) +

f(xi)

f ′(xi)
≈ −f

′′(xi)(r − xi)2

2!
,

so we have

r − xi+1︸ ︷︷ ︸
εi+1

≈ −f
′′(xi)

2f ′(xi)
(r − xi︸ ︷︷ ︸

εi

)2.

If we are close to the root, then −f
′′(xi)

2f ′(xi)
will be nearly constant and we have shown that the error in the Newton-

Raphson method drops as the square of the error term, so we say it converges quadratically.

10.4.1 Newton Raphson Example

Exercise #2

Source: http://www3.ul.ie/~mlc/support/CompMaths2/files/NewtonExample.pdf

Write the Newton-Raphson algorithm necessary to find the roots of

f(x) = x3 − x− 1.

Your answer will be in the form
xi+1 = xi + `(xi)

I.e., find `(xi). Next fully simplify this expression so that it may be written as a simple fraction of polynomials α(xi)
and β(xi):

xi+1 =
α(xi)

β(xi)
.

Then compute the factor Ri such that
εi+1 ≈ Riε2i .
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SolutiontoExercise#2

TheNewton-Raphsonalgorithmisgivenby

xi+1=xi−
f(xi)

f′(xi).

Thusiff(x)=x
3
−x−1,thealgorithmcanbewritten

xi+1=xi−
x
3
i−xi−1

3x2
i−1

=
2x

3
i+1

3x2
i−1

.

NextwecomputethefactorRisuchthat
εi+1≈Riε

2
i.

Basedontheexpressionwealreadyderivedforr−xi+1,wefind

r−xi+1
︸︷︷︸ εi+1

≈−f′′(xi)
2f′(xi)(r−xi ︸︷︷︸ εi

)
2
.

Pluggingf′(x
i)andf′′(x

i)intothisexpressionweget:

Ri≈−
3xi

3x2
i−1

Exercise #3

Suppose we have found that the Newton-Raphson method has begun to converge on a root, with |xi−1−xi| = 0.1 and
−f ′′(xi)
2f ′(xi)

≈ 1. About how many more iterations should we expect to get |ε| < 10−10?

Finally, if the bracket size shrinks by a factor of 1/2 each iteration, as in the Bisection Method, approximately how
many more iterations would we need to achieve a bracket width |xi−1 − xi| < 10−10? You may use the fact that
log10(2) ≈ 0.3.
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SolutiontoExercise#3

Bydefinition,εi=r−xi.Also,forNewton-Raphson,εi+1≈K(εi)
2
.WearetoldtoassumethatK≈1.Soif

|xi−1−xi|=0.1,thenbythesefacts,|xi−1−xi|=0.1≈|εi−1−Kε
2
i−1|.IftheNewton-Raphsonmethodhasbegunto

convergeonaroot,thentheKε
2
i−1isnegligibleinmagnitudecomparedtoεi−1.Thuswemayconcludethatεi−1≈0.1.

Wearetofindhowmanyiterationswewouldneedtogetεi<10−10.
Wearegiventhatεi−1≈0.1.BasedonthisfactandthederivedconvergencerateofNewton-Raphson,weget:

εi≈ε
2
i−1≈10−2

εi+1≈10−4

=⇒εi+2≈10−8

=⇒εi+3≈10−16

Sotheansweris3moreiterations.
Finally,ifRi=1/2,asintheBisectionMethod,approximatelyhowmanymoreiterationswouldweneedforamethod
thatconvergedlinearlytothesolution,usingthefactthatlog10(2)≈0.3?
ForthelinearconvergencecasewithRi=1/2,wehave:

εi+1≈
1

2
εi

=⇒εi+2≈
1

2
εi+1=

1

22εi

=⇒εi+m≈
1

2mεi

Thusifεi=0.1,andεi+m=1e-10,thenweget:

10−10≈0.1/2
m

=⇒−10≈−1−mlog102

=⇒9/log10(2)≈m≈9/0.3=90/3=30

Sotheanswerisapproximately30moreiterations.GivenhowmuchmorequicklyNewton-Raphsonwillconverge
whencomparedtoBisection,itisoftenthecasethatthehighly-robustbutslowly-convergingBisectionMethodwill
beusedonlyasabackupincaseNewton-Raphsondoesnotconverge.

10.5 Fixed-Point Iteration (FPI) without Derivatives

Source: http://wwwf.imperial.ac.uk/metric/metric_public/numerical_methods/iteration/fixed_point_

iteration.html

Newton’s method is one example of a fixed-point iteration (FPI) method. In short, FPI methods for solving
f(x) = 0 for x take the form

xi+1 = g(xi),

where g(xi) may depend on f(x) and/or its derivatives.
For the purposes of this section, we will focus exclusively on FPI methods for solving f(x) = 0 without deriva-

tives. I.e., we solve f(x) = 0 such that

1. f(x) = 0 is rewritten as x = g(x), where x−g(x) = ±f(x)α, g(x) does not depend on any derivatives of f(x),
and

2. the iteration strategy xi+1 = g(xi) is applied, starting with an initial guess for the root x0.

In other words, suppose we wish to solve f(x) = 0, where f(x) is a continuous function in the neighborhood of
the root x = r, and that f(x) = 0 can be rewritten as

x = g(x).
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Let’s pick a guess for the solution x, and to get the next guess, we simply plug this value of x into g(x). I.e.,

xi+1 = g(xi).

The benefit of the Fixed-Point Iteration method without derivatives is its simplicity: just rewrite f(x) = 0 as
x = g(x); i.e., algebraically extract an x from f(x) = 0 and place it on the left-hand side of the expression, defining
the remainder as g(x). Then choose the iteration as xi+1 = g(xi). Finally, see if the method converges to a root.
Given the ease of coding, this strategy is often used as a first attempt for finding a root. One can even easily
implement it within spreadsheet software!

10.5.1 Fixed-Point Iteration without Derivatives: Convergence

How quickly does the Fixed-Point Iteration method without derivatives converge? Suppose we pick a point x that
is close to the root r. By Taylor’s theorem,

g(x) = g(r) + (x− r)g′(r) + ...

However, we know that g(r) = r, and x is close to r, so

g(x)− r ≈ (x− r)g′(r)

Since
xi+1 = g(xi)

for a guessed root xi, we have

g(x)− r ≈ (x− r)g′(r)
=⇒ g(xi)− r ≈ (xi − r)g′(r)

xi+1 − r ≈ (xi − r)g′(r)
εi+1 ≈ εig

′(r).

Thus this method will converge so long as |g′(r)| < 1 in the vicinity of the root x = r. In the case that xi is very
far from a root, then this analysis may not hold, because we have thrown away (xi − r)2 and higher-order terms,
which may diverge.

10.5.2 Example of FPI Methods without Derivatives

Exercise #4:

Suppose you are given f(x) = x5 − ex. Explain why the following FPI method is ill-formed:

f(x) = x5 − ex − 1 = 0

=⇒ x6 − xex − x = 0

=⇒ x(x5 − ex) = x

=⇒ xi+1 =
xi

x5i − exi
.
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SolutiontoExercise#4

Multiplyingbothsidesoff(x)=0byx:
x
6
−xe

x
−x=0

addsanadditionalroot,x=0,whichdoesnotexistintheoriginalequation.

Source: https://mat.iitm.ac.in/home/sryedida/public_html/caimna/transcendental/iteration%20methods/
fixed-point/iteration.html

Example

Note that there is often no unique way of rewriting f(x) = 0 as x = g(x). For example, consider
f(x) = x4− 10−x = 0. Let’s construct four independent FPI methods without derivatives and analyze how well these
FPI methods can find the root at x = r ≈ 1.85558, with initial guess of neighboring point x0 = 2.

Let’s analyze four different FPI methods for solving f(x) = x4 − 10− x = 0

1. First rewrite f(x) = 0 as
f(x) = (x4 − 10)− x = 0 = g(x)− x,

to make a choice of g(x) more transparent: g(x) = (x4 − 10). Then our FPI scheme is given by

xi+1 = g(xi) = x4
i − 10.

Clearly |g′(xi)| = 4|x3
i | > 1 for all |xi| > 1

41/3 ≈ 0.63, and it turns out there are no roots (real or otherwise)
with |xi| < 1. Thus this FPI method will not converge to any roots for this method.

2. But there are many other ways to rewrite this f(x). It just requires that we recognize that finding g(x)
depends only on us rewriting f(x) = x4 − x− 10 = 0 so that x appears by itself on one side of the equation.

Of course we can add x to both sides and this is the g(x) we just found above. Let’s instead try adding x+10
to both sides and then taking the fourth root of both sides. Then we get g(x) = (x+ 10)1/4 and

xi+1 = (xi + 10)1/4.

Notice that g′(x) = (x+ 10)−3/4/4. For x = 2, |g′(x)| = 0.0388, and in fact this method does converge quite
rapidly to the root at x = r ≈ 1.85558 even for, e.g., x0 = 200.

3. Let’s try another strategy: Add x+ 10 to both sides, then take the square root of both sides, then divide by
x: g(x) =

√
x+ 10/x, so the FPI method may be written

xi+1 =
√
xi + 10/xi.

In this case, |g′(x)| = 0.793, which converges extremely slowly to the desired root.

4. One more: Add 10 to both sides, then divide both sides by (x3 − 1): g(x) = 10/(x3 − 1), yielding the FPI
method:

xi+1 = 10/(x3
i − 1).

In this case, |g′(2)| = 2.449, which diverges!

Thus we have found, of four FPI methods, one very rapidly converges to the root (the second one), one converges
slowly (the third one), and two do not converge at all. Despite its hit-or-miss character, FPI without derivatives
is widely used because it is by far the most trivial method to program, and can exhibit very rapid convergence for
many functions.
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10.6 Root-Finding Algorithms: Summary

Below is a table summarizing advantages & disadvantages of the various root-finding algorithms we explored.

Root-finding method Bracketing
Method?

Easy to
Code?

How Robust? How Fast to Converge?

Bisection Yes Easy Most Robust; f(x) need
only be continuous in bracket

Slow: linear (m = 1) con-
vergence

Secant Method No Easy–
Moderate

Less Robust; f ′′(x) needs
to exist everywhere; problems
near f ′(x) = 0

Moderate: m ≈ 1.612

False Position Yes Easy–
Moderate

Robust; f ′′(x) needs to exist
in bracket

Slow–Moderate: linear
(m = 1) convergence, but
usually faster than Bisection

Newton-Raphson No Easy–
Moderate

Less Robust; Problems near
f ′(x) = 0

Fast: quadratic (m = 2)
convergence

Fixed-Point Iteration
(FPI) without Deriva-
tives

No Very
Easy

Least robust; depends on
whether g′(xi) < 1 as n→∞

Varies, depending on
choice of g(x).

10.7 A Two-Dimensional Bisection Method

The Bisection Method is known as a bracketing method, requiring that we first find two points x = a and x = b
such that f(a)f(b) < 0. This requires that the underlying function be continuous and pass through zero at the root,
instead of just touching zero, like f(x) = x2 at x = 0.

For two functions f = {f1, f2} of two variables x = (x1, x2), function f1 will possess its own set of points {x}1
such that f1({x}1) = 0. Similarly, f2 will possess its own set of points {x}2 such that f2({x}2) = 0. If each function
is continuous and passes through zero at its roots, this set of points will be infinite and create a continuous curve Ci
on the (x1, x2) plane. Our goal is to find a point where curves C1 and C2 intersect, as this will be a point at which
both functions share a root.

To construct an algorithm that will enable us to find this point of intersection, we must first define a bracket
in two dimensions. In one dimension, we needed only find x = a and x = b such that f(a)f(b) < 0. Thus we only
needed to sample the (continuous) function twice to guarantee that the two points bracket the root.

In two dimensions, we are trying to find the intersection of the curves C1 and C2. We know that on one side of
C1, f1 > 0 and on the other side f1 < 0. Similarly, on one side of C2, f2 > 0 and on the other side f2 < 0. Now
consider the point where the two curves C1 and C2 intersect. As this point will appear where two curves intersect,
near the point of intersection, the curves create four regions:

1. Region A, where f1 > 0 and f2 > 0

2. Region B, where f1 < 0 and f2 > 0

3. Region C, where f1 > 0 and f2 < 0, and

4. Region D, where f1 < 0 and f2 < 0.

If we pick a single point in each of these four regions, so that they form the edges of a convex polygon, then
the polygon should provide a starting bracket for our two-dimensional Bisection Method.

Then the two-dimensional Bisection Method is as follows:

1. Evaluate the functions at the four midpoints of each edge of the convex polygon. Then draw the two line
segments that connecting midpoints from opposite sides. Evaluate the function where these line segments
intersect. If both functions are zero at any of these five points, then end the algorithm.

2. Where before you had a single convex polygon, the new line segments have broken it into a total of four
convex polygons. For the next iteration, pick the one polygon out of these four whose vertices represent all
four regions. Stop if convergence criterion is met, otherwise go to Step 1.
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Chapter 11: Optimization: Finding Minima and Maxima of

Functions

Optimization is a challenging problem; sometimes we look for global minima or maxima, but our algorithm can get
stuck in local minima or maxima. Similar to the fact that there exists no root-finding method for finding all zeroes
of a function, there is no algorithm that guarantees finding global function extrema for all possible functions.

To make matters worse, the precision at which extrema might be found is typically orders of magnitude less
than root finding methods. To understand why, consider the fact that when f(x) is differentiable and f ′(x) 6= 0 at
a root, f(x) can be well-approximated by a line with nonzero slope near a root. This fact lies at the heart of the
Secant, False Position, and Newton-Raphson methods. Thus near the root, f(x) ≈ ax+ c, where a 6= 0 and c are
constants. So when we are near a root but f(xi) 6= 0,

Erel(f(xi)) =

∣∣∣∣f(xi)− f(xi−1)

f(xi)

∣∣∣∣ ≈ Erel(xi) =

∣∣∣∣xi − xi−1

xi

∣∣∣∣ .
This implies that when we are searching for roots, if f(xi) and f(xi−1) are the same to 15 significant digits, then
we can typically expect xi and xi−1 to be the same to within 15 significant digits as well. Thus we can generally
expect to find roots (x such that f(x) = 0) to 15–16 significant digits in double precision.

But it comes to function minimization, the same does not hold true! When we have converged to a minimum in
double precision, we will have found values xi and xi−1 such that f(xi) and f(xi−1) are the same to 15–16 significant
digits (i.e., |f(xi)− f(xi−1)|/|f(xi)| ∼ 10−15). But near the minimum, the function cannot be approximated by a
line with nonzero slope, so |f(xi) − f(xi−1)|/|f(xi)| ∼ 10−15 does not imply that xi and xi−1 are the same to 15
significant digits! So how many digits should we expect?

We know that near a minimum at x = α,

f(x) ≈ f(α) +
f ′′(α)

2!
(x− α)2, (11.1)

where f ′′(α) > 0 for a minimum.
So when we have reached found the function’s minimum to within machine epsilon; i.e.,∣∣∣∣f(x)− f(α)

f(α)

∣∣∣∣ = εm

(assuming f(α) 6= 0 and α 6= 0; can always shift f(x) or x to avoid this eventuality), then, using Eq. (11.1), we get∣∣∣∣f(x)− f(α)

f(α)

∣∣∣∣ = εm

≈ f ′′(α)

2|f(α)|
(x− α)2

=⇒ |x− α| ≈

√
εm

2|f(α)|
f ′′(α)

=⇒ |x− α|
|α|

≈
√
εm

√
2|f(α)|
α2f ′′(α)

The right-most term will typically be of order 1, since most functions vary over a characteristic or “curvature”
scale xc ∼

√
|f(α)/f ′′(α)|, and a minimum will typically appear within a few characteristic scales (xc ∼ α), which

implies
√
|f(α)/[α2f ′′(α)]| ∼ 1. This means that we should only expect to find x such that f(x) is a minimum, to
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about 8 significant digits in double precision! In other words, don’t set your tolerance below about 1 part in 108

when finding maxima and minima using double-precision arithmetic.
Next we will review basic algorithms for finding local minima of functions f(x). To find local maxima, one may

simply look for minima of −f(x).

11.1 Minimization through Bisection

We are familiar with the Bisection Method for root finding. How might we extend this method to find, say, minima
of a function?

Suppose we have a function f(x) that is continuous and we have found three evenly-spaced points

x1 < x2 =
x1 + x3

2
< x3

such that f(x2) < f(x1) and f(x2) < f(x3). The bisection method for minimization evaluates f at point x4 midway
between x1 and x2 and point x5 midway between x2 and x3. We then choose the interval that gets us closer to the
minimum:

• If f(x4) < f(x2) then we choose the leftmost three points, x ∈ {x1, x4, x2}, for the start of our next bisection
step.

• If f(x5) < f(x2), we choose the rightmost three points, x ∈ {x2, x5, x3}, for the start of our next bisection
step.

• Otherwise, we choose the center three points, x ∈ {x4, x2, x5}, for the start of our next bisection step.

At the end of each iteration, we check if our convergence criterion is satisfied. Typically if xi corresponds to the
current minimum value of the function and xi−1 is the next smallest function value, the criterion would be written
|xi − xi−1| < ε(|xi|+ |xi−1|)/2, where ε ∼ √εm ∼ 10−8. If it is satisfied, we have found the minimum and exit the
loop. Otherwise, we repeat the method, re-defining our leftmost point to be x1, center point x2, and rightmost
point x3.

Although we are guaranteed to find a local minimum between x = x1 and x = x3 via bisection, notice that each
iteration requires that we evaluate the function at two points. Usually, the most expensive part of a minimization
algorithm is the evaluation of the function. Let’s next examine a minimization algorithm that requires only one
function evaluation per iteration, the Golden Section Search.

11.2 Golden Section Search

Unlike the bisection method, the Golden Section Search (GSS) requires only one function evaluation per iteration.
Here’s how it works.

Source: https://en.wikipedia.org/w/index.php?title=Golden_section_search&oldid=688437219

GSS, like Bisection Minimization, is a bracketing method. So first we must choose three points x1, x2, x3 such
that x1 < x2 < x3, f(x2) < f(x1), and f(x2) < f(x3).

We define f1 = f(x1), f2 = f(x2), and f3 = f(x3).
The idea with Golden Section search is to re-use previous function evaluations so that we only need a single

function evaluation to reduce the size of the interval. The key to this method is ensuring that the center point of
our bracket is never in the middle of the interval, instead placing it off-center by a set amount so that the bracketing
interval reduces in size by a fixed factor at each iteration.
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As shown in Fig. 11.1 (Figure from: https://en.wikipedia.org/w/index.php?title=Golden_section_search&
oldid=688437219), define a = x2 − x1, b = x3 − x2, and c = x4 − x2. We want the bracketing interval to reduce
in size by the same factor, a/b, at each iteration. To accomplish this requires that a 6= b, unlike the bisection
method. Our intervals will decrease in size by the same factor a/b at each iteration, regardless of whether the value
f(x4) = f4 is less than or greater than f2.

Figure 11.1: Golden Section Search illustra-
tion. (See text for source.)

In the case that, f2 < f4 we choose the next bracketing interval
to be x ∈ (x1, x4)

c

a
=
a

b
.

In case f2 > f4, we choose the next bracketing interval to be x ∈
(x2, x3), so the ratio of distances a/b becomes

c

b− c
=
a

b
.

Remember that we wish the bracketing interval to decrease in
size by a/b at each iteration, regardless of whether f2 < f4 or
f2 > f4, so we set

c

a
=
a

b
=

c

b− c
.

The first equation implies that c = a2/b, so the second equation
yields

a

b
=

a2/b

b− a2/b

=
a2

b2 − a2

=⇒ b

a
=

b2 − a2

a2
=
b2

a2
− 1

=⇒ b

a
=

1±
√

5

2

The only value for which this ratio is positive is called the Golden Ratio φ:

b

a
=

1 +
√

5

2
= φ ≈ 1.618

Thus the interval will decrease in size each iteration by a factor of a/b = 1/φ ≈ 0.618, which is exactly one over
the Golden Ratio. Note that since the golden ratio φ = b

a solves the equation

b

a
=
b2

a2
− 1,

it also has the unique property (multiplying the above equation by a
b ):

1 =
b

a
− a

b

= φ− 1

φ

=⇒ 1

φ
= φ− 1.

That is to say, the Golden Ratio φ has the property that its reciprocal 1
φ is equivalent to the difference between

itself and 1. Hence it naturally relates division and subtraction.
Here’s a summary of the Golden Section Search algorithm.

0. Define Φ = (
√

5− 1)/2.
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1. Evaluate f1, f2, and f3, where x1 < x3 and x2 = x3 + Φ(x1 − x3), such that f1 and f3 is known to bracket a
local minimum.

2. Let x4 = x1 + Φ(x3 − x1). Evaluate f4.

3. If:

(a) f2 < f4, leave x1 and f1 fixed, and make replacements {x3, f3} ← {x4, f4},
{x4, f4} ← {x2, f2}. Then set x2 = x3 + Φ(x1 − x3) and evaluate f2. Go to Step 4.

(b) f2 ≥ f4, leave x3 and f3 fixed, and make replacements {x1, f1} ← {x2, f2},
{x2, f2} ← {x4, f4}, Then set x4 = x1 + Φ(x3 − x1) and evaluate f4. Go to Step 4.

4. We now have [x1, x2, x4, x3] bracketing our minimum. Check for convergence, using method along same lines
as Bisection Minimization method. If we have not yet converged, go to Step 3.

Often when we are presented with an algorithm, there are equations that we do not immediately understand,
and it is up to us to derive them to ensure that a typo was not made by the authors. In light of this, let’s next try
to relate the equation x2 = x3 + Φ(x1 − x3) with the Golden Section Search algorithm as outlined previously.

The equation in Steps 2 and 3a relates x1, x2, x3, and φ as follows:

x2 = x3 + Φ(x1 − x3)

=⇒ x2 − x3 = Φ(x1 − x3).

In terms of the distances a and b we have defined previously, this equation can be written

=⇒ −b = −Φ(a+ b) =⇒ Φ =
b

a+ b
.

From our previous discussion, we know that b/a = φ, so let’s evaluate the reciprocal of the expression:

1

Φ
=
a+ b

b
=
a

b
+ 1 =

1

φ
+ 1.

Thus we have found that
1

φ
=

1

Φ
− 1. (11.2)

We know that the Golden Ratio has the property 1
φ = φ− 1, so in order for Eq. 11.2 to be true, φ must be equal

to 1
Φ . Alternatively we need only prove that Φ = 1

φ :

Φ =

√
5− 1

2

=

√
5− 1

2

[√
5 + 1√
5 + 1

]
=

5− 1

2(
√

5 + 1)

=
2√

5 + 1
=

1

φ
X

So we have shown that the equation in Steps 2 and 3a is consistent with the Golden Section Search algorithm
we derived previously.

Similarly, the equation in Step 3b is given by

x4 = x1 + Φ(x3 − x1)

=⇒ x4 − x1 = Φ(x3 − x1)

c+ a = Φ(a+ b),
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but we know that c/a = a/b = 1
φ and Φ = 1

φ , so dividing both sides by a, we get

c+ a

a
= Φ

a+ b

a
1

φ
+ 1 = Φ(1 + φ)

1

φ
+ 1 =

1

φ
(1 + φ) X

Thus we have demonstrated that the algorithm given above for the Golden Section Search indeed reduces the
interval by a factor of a/b = 1/φ ≡ Φ ≈ 0.618 at each iteration.

11.3 Brent’s Method

R.P. Brent, Algorithms for Minimization without Derivatives (Englewood Cliffs, NJ: Prentice Hall), Ch. 5.
Knowing three values of the function that bracket a minimum, why don’t we fit a parabola to these three values

of the function and choose the point x where the parabola is minimized as our next guess?
The extremum of a parabola f(x) = αx2 + βx + γ occurs when 2αx + β = 0 =⇒ x = −β/(2α). Thus we’ll

need to solve

f1 = αx2
1 + βx1 + γ

f2 = αx2
2 + βx2 + γ

f3 = αx2
3 + βx3 + γ

for α and β. We could just use the Lagrange polynomial interpolation formula to find α and β, or just work through
the arithmetic:

f2 − f1 = β(x2 − x1) + α(x2
2 − x2

1)

=⇒ β =
f2 − f1 − α(x2

2 − x2
1)

(x2 − x1)

=⇒ f2 − f3 = β(x2 − x3) + α(x2
2 − x2

3)

=
f2 − f1 − α(x2

2 − x2
1)

(x2 − x1)
(x2 − x3) + α(x2

2 − x2
3)

=⇒ f2 − f3

x2 − x3
=

f2 − f1

x2 − x1
− α(x2 + x1) + α(x2 + x3)

=
f2 − f1

x2 − x1
+ α(x3 − x1)

=⇒ α =
1

x3 − x1

(
f2 − f3

x2 − x3
− f2 − f1

x2 − x1

)
=

1

(x2 − x1)(x3 − x1)(x2 − x3)
[(f2 − f3)(x2 − x1)− (f2 − f1)(x2 − x3)]
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Now that we’ve found α, let’s see if we can write β so that −β/(2α) can be made as simple as possible:

=⇒ β =
f2 − f1 − α(x2

2 − x2
1)

(x2 − x1)

=
f2 − f1

(x2 − x1)
− α(x2 + x1)

=
f2 − f1

(x2 − x1)
− x2 + x1

x3 − x1

(
f2 − f3

x2 − x3
− f2 − f1

x2 − x1

)
= −f1

(
1

(x2 − x1)
+

(x2 + x1)

(x3 − x1)(x2 − x1)

)
+f2

(
1

(x2 − x1)
− (x2 + x1)

(x3 − x1)(x2 − x3)
+

(x2 + x1)

(x3 − x1)(x2 − x1)

)
+f3

(
(x2 + x1)

(x3 − x1)(x2 − x3)

)
=
−f1 ((x3 − x1)(x2 − x3) + (x2 − x3)(x2 + x1))

(x2 − x1)(x3 − x1)(x2 − x3)

+
f2 ((x3 − x1)(x2 − x3)− (x2 − x1)(x2 + x1) + (x2 − x3)(x2 + x1))

(x2 − x1)(x3 − x1)(x2 − x3)

+
f3 ((x2 − x1)(x2 + x1))

(x2 − x1)(x3 − x1)(x2 − x3)

=
1

(x2 − x1)(x3 − x1)(x2 − x3)
[−f1 ((x2 + x3)(x2 − x3))

+f2 ((x1 + x3)(x1 − x3))

+f3 ((x2 − x1)(x2 + x1))]

Recall the expression for α has the same denominator:

α =
1

(x2 − x1)(x3 − x1)(x2 − x3)
[(f2 − f3)(x2 − x1)− (f2 − f1)(x2 − x3)]

Thus

−β/(2α) = −−f1 ((x2 + x3)(x2 − x3)) + f2 ((x1 + x3)(x1 − x3)) + f3 ((x2 − x1)(x2 + x1))

2[(f2 − f3)(x2 − x1)− (f2 − f1)(x2 − x3)]

= x2 −
1

2

(x2 − x1)2[f2 − f3]− (x2 − x3)2[f2 − f1]

(x2 − x1)[f2 − f3]− (x2 − x3)[f2 − f1]

Exercise to reader: Prove the last step.
Here’s a possible “parabolic fitting” algorithm (this is not Brent’s method):

1. Choose three points x1, x2, and x3, such that x1 < x2 < x3 and both f2 < f1 and f2 < f3.

2. Fit a parabola to the function values at these three points. The minimum value of the parabola will appear
at x4 = −β/(2α) as computed above.

3. If

(a) f4 < f2 then choose the two nearest points to x4, including x4 as the new interval. Go to Step 4.

(b) f4 ≥ f2 then choose the two nearest points to x2, including x2 as the new interval. Go to Step 4.

4. Check for convergence, using a similar approach as the Bisection Minimization algorithm.

So why not use this parabolic fitting method for finding the minimum? Here’s why:

1. Suppose the initial x1 is far from x2 and x3, and x4 happens to appear between x2 and x3. In this case,
regardless of whether f4 < f2 or otherwise, the next three points in the bracket will be x2, x4, and x3 (the
closest two points to x2 are x4 and x3, and the closest two points to x4 are x2 and x3). At this point we have
lost our bracket if the function is monotonic between x2, x4, and x3.
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2. Losing the bracket means the points may become collinear, causing the minimum to be infinitely far away.
This is easily seen from our expression for −β/(2α); the denominator is zero zero if the points are collinear.
To see why this is the case, if κ is the slope of the line, then collinearity between the three points implies:

f2 − f3

x2 − x3
= κ =

f2 − f1

x2 − x1

=⇒ (f2 − f3)(x2 − x1) = (f2 − f1)(x2 − x3).

Even where functions are nearly collinear, we may be brought very far from our original bracketing interval.

3. Losing the bracket will cause the method to also latch on to local maxima.

4. Functions with discontinuous first or second derivatives in the interval will often be poorly fit by parabolas,
so it is better to use Golden Section Search to find minima of these functions.

To fix these shortcomings, we adopt Brent’s method, which combines a more careful parabolic interpolation
method with the Golden Section Search, so that when interpolation fails to quickly converge on to a minimum, we
revert to the Golden Section Search.

Brent’s method works as follows:

1. Find three points x1, x2, and x3 inside a and b, such that f(x1) < f(x2) < f(x3). Thus f(x1) is the smallest
function evaluation so far, followed by f(x2) and f(x3).

2. Find the extremum point y of the parabola through f(x1), f(x3), and f(x2). We accept the new point y if
both of the following conditions are satisfied:

(a) x4 is within a and b, and

(b) the distance between x1 and x4 is less than half the distance between x2 and x3, to ensure that we’re
converging.

When x4 is accepted, we then relabel our points x1, x2, and x3 such that f(x1) < f(x2) < f(x3) are the
function evaluations with the three smallest values.

3. If the new point x4 is not accepted, apply a single step of the Golden Section Search to x1, x2, and x3 to find
a new set of x1, x2, and x3, then go to the third step. Since x1, x2, and x3 may not be spaced according to
the Golden Ratio, choose the x4 trial point to be at the location 1− 1/φ times the distance from the central
point in the direction of the farthest point from the central point.

4. Check for convergence.

11.4 Survey of Other Optimization Algorithms

It would require an entire semester just to scratch the surface of the literature on optimization algorithms, clearly
more time than we have available to us. So instead of devoting more time to specific algorithms (we have covered
only the very basics), we will now review different optimization algorithms you may encounter in your research or
careers.

11.4.1 1D Methods without Derivatives

We covered some subset of these, including bisection minimization, golden section search, and Brent’s method for
minimization, so let’s ove on to multi-D methods without derivatives.

11.4.2 Multi-D Methods without Derivatives

Nedler-Mead algorithm: simple, “walking amoeba”. For an N-dimensional space, create a geometrical object
that has a total of N+1 points (vertices) and all connecting line segments. This “amoeba” “walks” along the N-
dimensional space through basic geometric transformations: reflection, expansion, and contraction, and each time
any points (at the ends of the “arms”) move, the function is evaluated at the updated points. The Nedler-Mead
algorithm governs the order and magnitude of these transformations, and generally only requires of order 100 lines
of code.
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Powell’s method starts with a set of basis vectors in an N -dimensional space. Starting with a guess for the
minimum represented by vector g, pick one basis vector ei and find the value of the scalar λ that minimizes the
function f(g + λei). Replace g ← g + λei. This “conjugate direction” minimization is one-dimensional and can
be accomplished using Brent’s method for minimization. Next, pick the next basis vector ei+1 and minimize in
that direction using exactly the same strategy. Cycle over the whole set of basis vectors until the function stops
decreasing.

Genetic algorithms are based on the principles of evolutionary biology. The reason our species and many other
species are so robust to our environments is because nature optimizes our DNA for reproductive fitness. That is to
say, those who produce the most healthy offspring that survive and in turn themselves produce the most offspring
will dominate any population. Hence their genes will carry on and are in some sense “optimal” for the environment.

The core of genetic or evolutionary algorithms is to first generate a population that represents possible minima x
of some function f(x). Then evaluate the fitness of that population selecting the best-fit individuals for reproduction
(parents). Then generate the next population using crossover and/or mutation operations, then evaluate the fitness
of the offspring to pick the parents of the next generation, etc.

Evolutionary or genetic algorithms are incredibly useful, particularly in the case where the dimensionality of
the problem or space of possible minima is enormous. There are many examples outside of Nature where such
algorithms have been applied, with some success. For example, to predict the price of some stock, one could
represent its price over time as some sum of functions that depend on time. Each function can have some arbitrary
number of input parameters, e.g., fi(t, a, b, c) = e−at

2−bt+c, and one can use evolutionary algorithms to find the set
of input parameters that minimizes the difference between the actual stock price and the unknown function f(t).
Then to predict future prices of the stock, one only needs to extrapolate f(t) to a future time.

Linear programming: Suppose you want to minimize or maximize a linear, multidimensional function subject
to a number of constraints. This is the domain of Linear Programming. Check out the graphing calculator example
from the following link:

Source: http://www.purplemath.com/modules/linprog3.htm

LP lecture notes: http://www.math.ucla.edu/~tom/LP.pdf

11.4.3 Methods with Derivatives

It is not generally the case that we can evaluate derivatives of the functions of which we wish to find extrema, but
when we can, the derivative information can indeed be useful in speeding up convergence. One example is provided
below.

Method of steepest descent: Approximate the function you wish to minimize by f(x) = xTAx/2−bTx+c.
Start with some initial guess g0. The next value g1 will be the minimum value of f(x) along the line from g0

in the direction of the local downhill gradient −∇f(g0). This basically involves matrix multiplications and is a
state-of-the-art algorithm for solving Ax = b as well.

11.4.4 Application of Optimization Algorithms: Neural Networks

Neural networks are also modeled on biology, based on our understanding of how our brains function. For example,
our brains have remarkable pattern-recognition capabilities, and this has to do with the fact that our brains exist
as an enormously complex network of neurons—electrically excitable cells that process and transmit information
both electrically and chemically. The process works by feeding sensory neurons with information, which passes
into the enormous neural network. Patterns are recognized by these networks via how they are connected, and the
output of the pattern recognition can be very useful. For example, when you write a check, the bank has software
with a very sophisticated neural network to recognize the written numbers and translate them into floating-point
numbers.

Where optimization comes into the process is in training the neural network to recognize patterns. For example,
when you deposit a check, the bank has neural network algorithms that read the numbers you wrote by hand and
convert them to floating point numbers. These algorithms consist of three parts: input, neural network, and output.
To generate a useful neural network typically requires the use of some optimization algorithm and some form of
training.
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MATH 521, Fall 2018 Notes

Prof. Zachariah B. Etienne

Chapter 12: Solving Ordinary Differential Equations (ODEs)

12.1 Euler’s Method

Consider the first-order ODE:

dy(t)

dt
= y′(t) = f(y, t)

Our goal is to solve this ODE for y(t), subject to some condition y(t0) = y0, which is equivalent to setting
the integration constant, if this ODE were integrable. Note that f(y, t) can be a function of both y(t) and the
independent variable t itself.

How might we go about solving this ODE on the computer? Let’s start with the derivative dy/dt. By the
definition of derivative, we know that

dy(t)

dt
≡ lim

∆t→0

y(t+ ∆t)− y(t)

∆t
.

So when ∆t is small, we know that

y′(t) = f(y, t) ≈ y(t+ ∆t)− y(t)

∆t

So one strategy for solving this ODE would be to start with the “initial” or boundary condition y(t0) = y0 and
use this expression to approximate the value of y(t1 = t0 + ∆t), as follows:

y(t0 + ∆t) = y1 ≈ y(t0) + ∆tf(y, t)

= y(t0) + ∆t
dy(t)

dt

Then to obtain the value at t0 + 2∆t, and then t0 + 3∆t, etc., we simply iterate using a fixed-point iteration
method. Defining ti = t0 + i∆t and yi = y(t0 + i∆t), the method can be written as

yi+1 = yi + ∆tf(yi, ti).

This iterative strategy for solving ODEs is known as Euler’s method, which will in fact yield the correct solution
y(t) as ∆t→ 0. But what sort of error will be added at each step?

Taylor expanding about t = t0, we get (starting with the definition of Taylor series)

y(t) =
∞∑
n=0

y(n)(t0)

n!
(t− t0)n

=⇒ y(t0 + ∆t) =

∞∑
n=0

y(n)(t0)

n!
(∆t)n

= y(t0) + ∆t
y′(t0)

1!
+ (∆t)2 y

′′(t0)

2!
+ ...

=⇒ y(t0 + ∆t) = y(t0) + ∆t
dy(t0)

dt
+O

(
(∆t)2

)
.

Thus the error term goes like the second derivative of y(t0) times (∆t)2. Note that this is the error on a single
iteration, also known as the local truncation error.
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This error is not particularly useful, as we normally need to solve the ODE from t0 to some fixed T , which will
be many iterations away from t0. To reach t = T at a given step size ∆t, we will need to step forward a total of
(T − t0)/(∆t) iterations. Thus the total accumulated error associated with truncating the Taylor expansion
goes like the error of a single iteration, (∆t)2, multiplied by the total number of iterations, which is proportional to
1/(∆t). Thus the total accumulated error is proportional to ∆t, which is why we typically refer to Euler’s method
as a first-order method.

As you might imagine we can reduce the truncation error by simply including more terms from the function’s
Taylor expansion. Let’s now work out a method for solving ODEs that with total accumulated error proportional
to (∆t)2.

12.2 Explicit Runge-Kutta Second-Order Methods

Source: http://web.mit.edu/10.001/Web/Course_Notes/Differential_Equations_Notes/node5.html

Runge-Kutta Second-Order methods are a type of second-order predictor-corrector method. Such methods
perform an estimate step from iteration i to i+ 1, using e.g., Euler’s method, to get a prediction of the solution at
step i+ 1. This is the “predictor” step. Then it uses this prediction to perform at least one more “corrector” step,
which increases the accuracy of the solution.

Let’s return to the simple ODE:
y′(t) = f(y, t).

A general two-step Runge-Kutta method is as follows,

k1 = ∆tf(yi, ti)

k2 = ∆tf(yi + βk1, ti + α∆t)

where k1 is the predicted value of the solution (simply the Euler step), k2 is the corrected value of the solution, and
α and β are unknowns that must be chosen such that the method is locally third-order convergent in ∆t. Then to
get our solution at the next iteration, we simply sum a linear combination of the k1 and k2:

yi+1 = yi + ak1 + bk2 +O
(
(∆t)3

)
,

where a and b are additional unknowns that must be chosen so that the method is locally third-order convergent
in ∆t.

Our goal now is to find these values of a, b, α, and β so that our scheme possesses local truncation error that
converges to zero at third order in ∆t (i.e., local truncation error proportional to (∆t)3).

We proceed by relating y(ti), the solution at some step ti, to the solution at the next step ti+1 = ti + ∆t using
the Taylor expansion of y(ti + ∆t) to third order in ∆t:

y(ti + ∆t) = y(ti) + ∆ty′(ti) +
(∆t)2

2!
y′′(ti) +O

(
(∆t)3

)
Note that

y′′(ti) =
df(yi, ti)

dt

Using the chain rule for partial derivatives, we get

y′′(ti) =
∂f(yi, ti)

∂t
+
∂f(yi, ti)

∂y

dy

dt

= ∂tf(yi, ti) + f(yi, ti)∂yf(yi, ti)

Thus we get:

y(ti + ∆t) = y(ti) + ∆ty′(ti) +
(∆t)2

2!
(∂tf(yi, ti) + f(yi, ti)∂yf(yi, ti)) +O

(
(∆t)3

)
.
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Let’s simplify the notation a bit

yi+1 = yi + ∆tfi +
(∆t)2

2!
([∂tf ]i + fi[∂yf ]i) +O

(
(∆t)3

)
,

where we have defined fi = f(yi, ti), and the partial derivatives of f with respect to variable z at (y, t) = (yi, ti) as
[∂zf ]i = [∂zf ]y=yi, t=ti .

Let’s return to the definition of k2, which can be Taylor expanded as well (using the standard Taylor series
expression for a function of two variables), at iteration n:

k2 = ∆tf(yi + βk1, ti + α∆t)

= ∆t ([f(y, t)]i + α∆t[∂tf ]i + βk1[∂yf ]i) +O
(
(∆t)3

)
Let’s substitute all of this back into the expression for yi+1. For notational simplicity, let’s agree that f =

f(yi, ti):

yi+1 = yi + ak1 + bk2 +O
(
(∆t)3

)
= yi + a∆tf + b∆t (f + α∆t∂tf + βk1∂yf) +O

(
(∆t)3

)
= yi + a∆tf + b∆t (f + α∆t∂tf + β∆tf∂yf) +O

(
(∆t)3

)
= yi + (a+ b)∆tf + b(∆t)2 (α∂tf + βf∂yf) +O

(
(∆t)3

)
We can compare this to the Taylor expansion of yi+1 to obtain values for our coefficients:

a+ b = 1

αb =
1

2

βb =
1

2

Notice we have 3 equations and 4 unknowns! This means there are infinitely many ways we could write this
stepping to give us a second-order accurate scheme, so let’s choose to write the most general scheme with free
parameter α:

αb =
1

2
and βb =

1

2
=⇒ α = β

=⇒ b =
1

2α
(α 6= 0)

a+ b = 1 =⇒ a = 1− 1

2α
.

Thus the generic, second-order Runge-Kutta method may be written as

k1 = ∆tf(yi, ti)

k2 = ∆tf(yi + αk1, ti + α∆t)

yi+1 = yi +

(
1− 1

2α

)
k1 +

1

2α
k2 +O

(
(∆t)3

)
,

for any α 6= 0. Open exercise: What does it mean if α < 0?
Picking the following specific values for α results in the corresponding methods listed below:

• α = 1
2 : The midpoint method.

• α = 1: Heun’s method.

• α = 2
3 : The Ralston method. This method was derived with a goal of minimizing the error associated with

the O
(
(∆t)3

)
term. We will explore the impact of this choice below in Example #2.
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12.2.1 Moving from t0 to t1: Worked Examples of Heun’s Method

Example #1

Consider the ODE
y′(t) = −ty(t), y(0) = y(t0) = 1.

• Solve this ODE exactly, then Taylor expand the solution about t = 0 to approximate the solution at y(t = ∆t)
to fifth order in ∆t.

• Next solve this ODE using the second-order-accurate Heun’s method by hand with a step size of ∆t to find y(∆t).
Confirm that the solution obtained when using Heun’s method has an error term that is at worst O

(
(∆t)3

)
. If

the dominant error is proportional to a higher power of ∆t, explain the discrepancy.

This ODE is separable, and has the solution of a normal, Gaussian distribution:

y(t) = ce−t
2/2

Consider initial conditions y(0) = 1 Then the solution is

y(t) = e−t
2/2

We know y(0) = y(t0) = y0 = 1, so let’s now find y1 = y(∆t) using Heun’s method (i.e., the generic RK2
method with α = 1):

k1 = ∆tf(yn, tn)

k2 = ∆tf(yn + k1, tn + ∆t))

yn+1 = yn +
1

2
(k1 + k2) +O

(
(∆t)3

)
.

Here, f(y, t) = −ty, so

k1 = ∆tf(y0, t0)

= ∆t× 0

= 0

k2 = ∆tf(y0 + k1, 0 + ∆t)

= ∆tf(y0 + 0, 0 + ∆t)

= ∆t(y0)(−∆t)

= −∆t2

y(∆t) = y(0) +
1

2
(k1 + k2)

= 1− (∆t)2/2

Notice that the exact solution is

y(∆t) = e−(∆t)2/2 = 1− (∆t)2/2 + (∆t)4/8 +O
(
(∆t)6

)
Thus Heun’s method yields the correct solution at the end of the first iteration to fourth order in the error, in this
case. This is in part because Heun’s method preserves the even-ness of the function (i.e., f(−t) = f(t)). In general
you should only expect the solution at the end of the first iteration to be accurate to third-order in the error.
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Example #2

Consider the ODE
y′ = y − 2te−2t, y(0) = y(t0) = 0.

• Solve this ODE exactly, then Taylor expand the solution about t = 0 to approximate the solution at y(t = ∆t)
to fifth order in ∆t.

• Next solve this ODE using Heun’s method by hand with a step size of ∆t to find y(∆t). Confirm that the
solution obtained when using Heun’s method has an error term that is at worst O

(
(∆t)3

)
. If the dominant error

is proportional to a higher power of ∆t, explain the discrepancy.

• Finally solve this ODE using the Ralston method by hand with a step size of ∆t to find y(∆t). Is the coefficient
on the dominant error term closer to the exact solution than Heun’s method?

We can solve this equation via the method of integrating factors, which states that ODEs of the form:

y′(t) + p(t)y(t) = g(t)

are solved via

y(t) =
1

µ(t)

[∫
µ(s)g(s)ds+ c

]
,

where the integrating factor µ(t) is given by

µ(t) = exp

(∫
p(t)dt

)
Here, p(t) = −1 and g(t) = −2te−2t. Then

µ(t) = exp

(
−
∫
dt

)
= e−t+c = ke−t

and

y(t) = et/k

[∫
ke−s(−2se−2s)ds+ c

]
= −2et

[∫
se−3sds+ c′

]
= −2et

[
e−3t

(
− t

3
− 1

9

)
+ c′

]
= −2e−2t

(
− t

3
− 1

9

)
− 2c′et

= e−2t

(
2
t

3
+

2

9

)
+ c′′et

If y(0) = 0 then we can compute the integration constant c′′, and y(t) becomes

y(t) =
2

9
e−2t

(
3t+ 1− e3t

)
.

The Taylor Series expansion of the exact solution about t = 0 evaluated at y(∆t) yields

y(∆t) = −(∆t)2 + (∆t)3 − 3(∆t)4

4
+

23(∆t)5

60
− 19(∆t)6

120
+O

(
(∆t)7

)
.
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Next we evaluate y(∆t) using Heun’s method. We know y(0) = y0 = 0 and f(y, t) = y − 2te−2t, so

k1 = ∆tf(y(0), 0)

= ∆t× 0

= 0

k2 = ∆tf(y(0) + k1, 0 + ∆t)

= ∆tf(y(0) + 0, 0 + ∆t)

= ∆t(−2∆te−2∆t)

= −2(∆t)2e−2∆t

y(∆t) = y0 +
1

2
(k1 + k2) +O

(
(∆t)3

)
= 0− (∆t)2e−2∆t

= −(∆t)2(1− 2∆t+ 2(∆t)2 + ...)

= −(∆t)2 + 2(∆t)3 +O
(
(∆t)4

)
.

Thus the coefficient on the (∆t)3 term is wrong, but this is completely consistent with the fact that our stepping
scheme is only third-order accurate in ∆t.

Let’s see if we can improve them with the Ralston method:

k1 = ∆tf(yn, tn)

k2 = ∆tf(yn + 2k1/3, tn + 2∆t/3))

yn+1 = yn +

(
1

4
k1 +

3

4
k2

)
+O

(
(∆t)3

)
.

Applying the Ralston method to our ODE, we get:

k1 = ∆tf(y(0), 0)

= ∆t× 0

= 0

k2 = ∆tf(y(0) + 2k1/3, 0 + 2∆t/3)

= ∆tf(y(0) + 0, 0 + 2∆t/3)

= ∆t(−2(2∆t/3)e−4∆t/3)

= −4/3(∆t)2e−4∆t/3

y(∆t) = y0 +
1

4
k1 +

3

4
k2 +O

(
(∆t)3

)
= 0− (∆t)2e−4∆t/3

= −(∆t)2

(
1− 4∆t

3
+

1

2!

(
4∆t

3

)2

+ ...

)
= −(∆t)2 + 4/3(∆t)3 +O

(
(∆t)4

)
Notice that 4/3 is closer to the exact Taylor Series expansion coefficient of 1 than the 2 we found with Heun’s

method. Recall that α in the Ralston method was chosen to minimize truncation error, and indeed the Ralson
method possesses lower truncation error than Heun’s method in this case.
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12.2.2 Demonstration that Total Accumulated Error is O ((∆t)2) with Heun’s Method

Example #3

Consider the simple ODE:
y′ = −y, y(0) = y0 = 1.

• Solve this ODE exactly, then Taylor expand the solution about t = 0 to approximate the solution at y(t = ∆t),
y(t = 2∆t), and y(t = 3∆t) to third order in ∆t (i.e., up to and including the (∆t)3 term).

• Next solve this ODE using Heun’s method by hand with a step size of ∆t to find y(∆t), y(2∆t), and y(3∆t).

• Compute the absolute error between the exact solution and the numerical solution for the (∆t)3 term. Notice
that the constant coefficient increases linearly with the number of steps taken.

• Next suppose we wish to solve the ODE from t0 = 0 to some final t, tf , taking N steps. Derive an expression
relating tf , N , and ∆t to prove that after N steps, the dominant error is proportional to (∆t)2 and not (∆t)3.

This is an exact equation, with solution y = e−t. The Taylor expansion about t = ∆t is given by

y(∆t) = y1 = 1−∆t+
∆t2

2!
− ∆t3

3!
+O

(
(∆t)4

)
Similarly, the exact solution at t = 2∆t is given by the Taylor expansion:

y(2∆t) = 1− 2∆t+
(2∆t)2

2!
− (2∆t)3

3!
+ ...

= 1− 2∆t+ 2(∆t)2 − 8

6
(∆t)3 + ...

Finally, the exact solution at t = 3∆t is given by the Taylor expansion:

y(3∆t) = 1− 3∆t+
(3∆t)2

2!
− (3∆t)3

3!
+ ...

= 1− 3∆t+
3

4
(∆t)2 − 9

2
(∆t)3 + ...

Next we focus on Heun’s method. For y1 = y(∆t), this method yields:

k1 = ∆tf(y0, t0)

= −∆t× 1

= −∆t

k2 = ∆tf(y0 + k1, t0 + ∆t)

= ∆tf(1−∆t, 0 + ∆t)

= −∆t(1−∆t) = −∆t+ (∆t)2

y1 = y0 +
1

2
(k1 + k2) +O

(
(∆t)3

)
= 1 +

1

2
(−∆t−∆t+ (∆t)2)

= 1−∆t+
(∆t)2

2
,

which indeed matches the exact solution up to and including the second-order term in the Taylor expansion. Thus
the absolute error of the dominant error term at the end of iteration 1 is

Edom
1 = |num− exact| = 1

6
(∆t)3.
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Let’s now compute y2:

k1 = ∆tf(y1, t1)

= −∆t

(
1−∆t+

(∆t)2

2

)
= −∆t+ (∆t)2 − (∆t)3

2
k2 = ∆tf(y1 + k1, t1 + ∆t)

= −∆t

(
1−∆t+

(∆t)2

2
−∆t+ (∆t)2 − (∆t)3

2

)
= −∆t+ 2(∆t)2 − 3

2
(∆t)3 +

1

2
(∆t)4

y2 = y1 +
1

2
(k1 + k2)

= 1−∆t+
(∆t)2

2
+

1

2

(
−∆t+ (∆t)2 − (∆t)3

2
−∆t+ 2(∆t)2 − 3

2
(∆t)3 +

1

2
(∆t)4

)
= 1− 2∆t+ 2(∆t)2 − (∆t)3 +

1

4
(∆t)4.

Thus the dominant error at iteration 2, which occurs in the 3rd-order term, is

Edom
2 = |num− exact| =

∣∣∣∣−1 +
8

6

∣∣∣∣ (∆t)3 =
2

6
(∆t)3.

If you proceed and compute y3, y4, etc., you will find that the error in the dominant-order (i.e., 3rd-order in
∆t) term at iteration N follows the pattern

Edom
i =

N

6
(∆t)3.

Thus the dominant error is indeed proportional to N(∆t)3, so that if we wish to measure the dominant error
at some fixed t = T = N∆t, it will be given by

Edom
i (t) =

1

6
N(∆t)3 =

T

6

(∆t)3

∆t
∝ (∆t)2.

So if we increased our sampling rate, going from ∆t to ∆t/2, the number of iterations required to evaluate the
solution at t = T would double. But we have just shown that the dominant error term at t = T would double as
well, meaning that at some fixed t = T = N∆t, the error Edom

i should grow proportionally to (∆t)3/(∆t) = (∆t)2.

12.2.3 Additional Example: Heun versus Ralston

Example #4

Consider the simple ODE:
y′ = y + t, y(0) = y0 = 1.

• Solve this ODE exactly, then Taylor expand the solution about t = 0 to approximate the solution at y(t = ∆t),
y(t = 2∆t), and y(t = 3∆t) to third order in ∆t (i.e., up to and including the (∆t)3 term).

• Next solve this ODE using Heun’s method by hand with a step size of ∆t to find y(∆t).

• Finally solve this ODE using the Ralston method by hand with a step size of ∆t to find y(∆t).

• Explain the similarities or differences between Heun’s method and the Ralston method when computing y(∆t).

The ODE takes the general form
y′(t) + p(t)y(t) = g(t),

which is solved via the Method of Integrating Factors:

y(t) =
1

µ(t)

∫
µ(s)g(s)ds,
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where the integrating factor µ(t) is given by

µ(t) = exp

(∫
p(t)dt

)
.

Here, p(t) = −1 and g(t) = t. Then

µ(t) = exp

(
−
∫
dt′
)

= e−t+c = ke−t

and

y(t) = et/k

∫ t

kse−sds = et
∫ t

se−sds.

Integration by parts is based on the product rule:

(u(s)v(s))′ = u′v + v′u =⇒
∫
u′vds =

∫
(uv)′ds−

∫
v′uds,

so defining u′ = e−s and v = s, we get u = −e−s and v′ = 1. Thus the solution becomes

y(t) = et
∫ t

se−sds = et
[
−te−t −

∫ t

e−s + C0

]
= et

[
−te−t − e−t + C

]
= Cet − t− 1.

Plugging in our initial condition, y(t = 0) = 1, we get y(0) = 1 = C − 1, so C = 2, and our solution is given by

y(t) = 2et − t− 1.

Taylor expanding this about t = 0, we get

y(∆t) = 2

(
1 + ∆t+

(∆t)2

2!
+

(∆t)3

3!
+ ...

)
−∆t− 1 = 1 + ∆t+ (∆t)2 +

(∆t)3

3
.

Next we apply Heun’s method. Recall our ODE implies that f(y, t) = y + t, so Heun’s method for the zeroth
iteration (i = 0) gives:

k1 = ∆tf(y0, t0) = ∆t(y0 + t0) = ∆t

k2 = ∆tf(y0 + k1, t0 + ∆t) = ∆t ((y0 + k1) + (t0 + ∆t)) = ∆t ((1 + ∆t) + (0 + ∆t)) = ∆t+ 2 (∆t)2

y(∆t) = y1 = y0 +
1

2
(k1 + k2) = 1 +

1

2

(
∆t+ ∆t+ 2 (∆t)2

)
= 1 + ∆t+ (∆t)2 ,

which is consistent with the exact solution up to and including the second-order term in powers of ∆t!
Next we apply the Ralston method:

k1 = ∆tf(y0, t0) = ∆t(y0 + t0) = ∆t

k2 = ∆tf

(
y0 +

2

3
k1, t0 +

2

3
∆t

)
= ∆t

((
y0 +

2

3
k1

)
+

(
t0 +

2

3
∆t

))
= ∆t

((
1 +

2

3
∆t

)
+

(
0 +

2

3
∆t

))
= ∆t+

4

3
(∆t)2

y(∆t) = y1 = y0 +
1

4
k1 +

3

4
k2 = 1 +

1

4
∆t+

3

4

(
∆t+

4

3
(∆t)2

)
= 1 + ∆t+ (∆t)2 ,

which is consistent with the exact solution up to and including the second-order term in powers of ∆t!
In fact, we have found that for this ODE, both the Ralston and Heun’s method yield exactly the same result

for y(∆t). This contrasts with the earlier example, largely because of terms like e−2∆t that appeared due to the
explicit e−2t in f(y, t), which we needed to Taylor expand in that example. Open question: Will both methods be
equivalent for all y(t) for t > ∆t as well?
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12.3 Runge-Kutta Fourth Order (RK4)

Thus far, we have explored first- and second-order Runge-Kutta (RK) methods. These methods guarantee that the
total accumulated error will be proportional to (∆t)1 and (∆t)2, respectively. Recall that the first-order (Euler’s)
RK method can be derived directly from keeping terms up to and including (∆t)2 in the Taylor series expansion
of y(t + ∆t). The generic second-order RK method was then derived by expanding the Taylor series to the next
higher order.

A similar procedure can be applied to derive higher-order RK methods. Like the generic second-order RK
method, these higher-order methods are not unique.

The most widely known Runge-Kutta technique guarantees total accumulated truncation error proportional to
(∆t)4 for smooth functions y(t). This technique is known as RK4, or sometimes the Runge-Kutta method.
RK4 won popularity by being both highly robust and rapidly convergent.

Definition of RK4: Given the generic ODE

y′(t) = f(y, t),

The RK4 method obtains the solution y(t+ ∆t) = yi+1 at time ti+1 from yi and ti via:

k1 = ∆tf(yi, ti),

k2 = ∆tf(yi + 1
2k1, ti + ∆t

2 ),

k3 = ∆tf(yi + 1
2k2, ti + ∆t

2 ),

k4 = ∆tf(yi + k3, ti + ∆t),

yi+1 = yi + 1
6 (k1 + 2k2 + 2k3 + k4) +O

(
(∆t)5

)
.

Notice that for each timestep, RK4 requires four evaluations of the RHS of the equation. Recall second-order
RK methods only required two such evaluations. Thus RK4 will only be superior to second-order methods if you
are also able to double your timestep while maintaining at worst the same level of error. This depends on the
problem, but usually RK4 is superior to second-order methods in this sense, which is why so many people depend
on it. The bottom line is, a higher-order scheme often, but does not always yield smaller errors more efficiently
than a lower-order scheme.

Now let’s return to the first example:

Example #1, Revisited: Validating RK4

Consider the ODE
y′(t) = −ty(t) y(0) = 1

Again, this ODE is separable, and has the solution of a normal, Gaussian distribution:

y(t) = e−t
2/2.

• Taylor expand the solution about t = 0 to approximate the solution at y(t = ∆t) up to and including the
seventh-order term in ∆t.

• Next solve this ODE using RK4 by hand with a step size of ∆t to find y(∆t). Verify that the solution obtained
when using RK4 has an error term that is at worst O

(
(∆t)5

)
.

The exact solution of y(∆t) up to and including the O
(
∆t7

)
term is given by

y(∆t) = e−(∆t)2/2 = 1− (∆t)2/2 + (∆t)4/8− (∆t)6/48 +O
(
∆t8

)
.

(Notice that since this is an even function, the O
(
∆t7

)
is zero.)

We know y(0) = y(t0) = y0 = 1, so y(∆t) using RK4 is as follows. Note that f(y, t) = −ty, so

k1 = ∆tf(y0, t0) = ∆tf(1, 0)

= ∆t× (−0× y0)

= 0,
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k2 = ∆tf

(
y0 +

k1

2
, t0 +

∆t

2

)
= ∆tf(y0 + 0, t0 + ∆t/2)

= ∆t(y0)(−∆t/2)

= −(∆t)2/2,

k3 = ∆tf

(
y0 +

k2

2
, t0 +

∆t

2

)
= ∆tf(y0 + (−(∆t)2/2)/2, 0 + ∆t/2)

= ∆tf(y = 1− (∆t)2/4, t = ∆t/2)

= ∆t
[
−(1− (∆t)2/4)(∆t/2)

]
= −(∆t)2/2 + (∆t)4/8,

and

k4 = ∆tf(y0 + k3∆t, t0 + ∆t)

= ∆tf(1 + (−(∆t)2/2 + (∆t)4/8)∆t, 0 + ∆t)

= ∆t
[
−(1 + (−(∆t)2/2 + (∆t)4/8)∆t)(∆t)

]
= (∆t)2

[
−(1 + (−(∆t)2/2 + (∆t)4/8)∆t)

]
= −(∆t)2 + (∆t)4/2− (∆t)6/8,

so that

y1 = y0 + 1
6 (k1 + 2k2 + 2k3 + k4)

= 1 + 1
6

[
0 + 2(−(∆t)2/2) + 2(−(∆t)2/2 + (∆t)4/8) + (−(∆t)2 + (∆t)4/2− (∆t)6/8)

]
= 1 + 1

6

[
−3(∆t)2 + 2((∆t)4/8) + ((∆t)4/2− (∆t)6/8)

]
= 1 + 1

6

[
−3(∆t)2 + 3(∆t)4/4− (∆t)6/8

]
= 1− 1

2(∆t)2 + (∆t)4/8− (∆t)6/48

Comparing this to the exact solution, we find that although RK4 can only be expected to yield local truncation
error proportional to (∆t)5, RK4 manages to get the next order term exactly correct in this case!

12.4 The Family of Explicit Runge-Kutta-Like Schemes

“Explicit” Runge-Kutta methods, including all the RK methods discussed in this chapter, can be written:

yi+1 = yi +

s∑
`=1

b`k`,

where

k1 = ∆tf(yi, ti)

k2 = ∆tf(yi + [a21k1], ti + c2∆t)

k3 = ∆tf(yi + [a31k1 + a32k2], ti + c3∆t)

...

ks = ∆tf(yi + [as1k1 + as2k2 + · · ·+ as,s−1ks−1], ti + cs∆t).

Whereas “explicit” methods generally relate yi+1 to possibly complicated functions of yi, “implicit” methods
generally relate yi to more complicated functions of yi+1 requiring a matrix inversion to evaluate yi+1.

Both explicit and implicit methods are usually communicated in the form of so-called “Butcher tableaus”, or
“Butcher tables”. A Butcher table has the general form:
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0
c2 a21

c3 a31 a32
...

...
. . .

cs as1 as2 . . . as,s−1

b1 b2 . . . bs−1 bs

The Butcher table for Heun’s method is:

0
1 1

1
2

1
2

We say that a Runge-Kutta method is consistent if

i−1∑
j=1

aij = ci for i = 2, . . . , s

Similarly, the Butcher table for the Ralston method is:

0
2/3 2/3

1/4 3/4

Finally, the RK4 scheme’s Butcher table is given by:

0
1
2

1
2

1
2 0 1

2
1 0 0 1

1
6

1
3

1
3

1
6

12.5 Higher-Order ODEs

We can solve higher-order ODEs by applying a trick to reduce them to a set of coupled, first-order ODEs. Consider
the ODE

y′′(t)− ty′(t) + cos(t)y(t) = 0,

with y′(0) = y(0) = 0.
Let’s define a variable v(t) = y′(t). Then we can rewrite this second order equation as the first-order equations:

y′(t) = v(t)

v′(t) = tv(t)− cos(t)y(t),

v(0) = y(0) = 0.
We can then solve this equation using Euler’s method via:

yi+1 = yi + ∆tvi

vi+1 = vi + ∆t(tivi − cos(ti)yi)

Notice that Euler’s method generalizes quite simply to coupled first-order ODEs.
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Heun’s method also easily generalizes:

ky1 = ∆tvi

kv1 = ∆t(tivi − cos(ti)yi)

ky2 = ∆t(vi + kv1)

kv2 = ∆t((ti + ∆t)(vi + kv1)− cos(ti + ∆t)(yi + ky1)

yi+1 = yi +
1

2
(ky1 + ky2)

vi+1 = vi +
1

2
(kv1 + kv2).
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MATH 521, Fall 2018 Notes

Prof. Zachariah B. Etienne

Chapter 13: Final Exam Review Topics/Example Problems

Your final exam will take place at the sanctioned time (see the Registrar’s website or the
syllabus) in our usual course meeting room.

Note that this exposition of topics and example problems is not comprehensive. However, your Final Exam will
be comprehensive. In other words, you will be expected to be sufficiently familiar with all topics covered in class,
such that you are able to quickly and competently answer questions on these topics.

In addition to example problems below, please study notes, midterms, & homeworks, as problems
similar to those you have encountered may appear on the Final Exam. The Additional/Supplemen-
tary Reading Material List on the course website may also be useful.

13.1 Short-Answer Problems

You can expect to see short-answer questions on the Final Exam. Your answer to these problems must both fit
in the number of sentences specified, and be clear and unambiguous, adopting vocabulary used in class whenever
possible.

Short-Answer Exercises

Your answers for the following short-answer problems must be clear and unambiguous, adopting vocabulary used in class whenever possible.

1. When performing a numerical integration over a fixed interval in the x-direction using the Extended Trapezoidal Rule, you find that
whether the sample rate is set to ∆x/2, ∆x, or 2∆x, you consistently find the relative error in the result to be of order 1e-16. In
one or two sentences, explain the source of this error.

2. Many methods in numerical analysis guarantee convergence of errors to zero provided certain conditions are met. In two or three
sentences, describe under what circumstances undersampling error will prevent numerical errors from converging to zero, and
provide two examples of numerical methods that can be influenced by undersampling error.

3. To solve a math problem on the computer, you implement a numerical analysis algorithm with computational complexityO(N3). The
algorithm takes too long to run, so you implement an alternative algorithm with computational complexity O(N2). Frustratingly, the
O(N2) algorithm is slower than the O(N3) algorithm! Assuming that you programmed both algorithms correctly and as efficiently
as possible, in up to two sentences explain why the O(N3) algorithm can be faster.

Solutions

1.Astherelativeerrorisoforder1e-16,theSDAbetweenthenumericalandexactresultsisapproximately16,correspondingto
themaximumnumberofsignificantdecimaldigitsstorableindouble-precisionarithmetic.Thusourresultsfromthenumerical
integrationaredominatedbyroundofferror.

2.Manymethodsinnumericalanalysisguaranteeconvergenceoferrorstozerowithanincreasedsamplingofsomefunction(e.g.,
numericalintegration,solvingODEs,interpolationetc.).Forsuchconvergence,thesemethodsrequirethefunctionbesampledator
abovesomeminimumsamplingrate,knownastheNyquistsamplingrate.Ifthefunctionissampledbelowthisrate,undersampling
errorwilldominateandconvergencemaynotbeobservedinthenumericalmethod.

3.Thetotalcomputationalcost(inFLOPs)ofanalgorithmwithO(N3)complexitymightbenN3,andthecostofanalgorithmwith
O(N2)complexitymightbemN2.Ifm�nandNissufficientlysmall,thennN3maybesmallerthanmN2.

13.2 Scientific Notation, Significant Digits, and Relative Error

Be sure to study Midterm Exams, homeworks, and notes. There are additional practice scientific notation problems
linked to from the course homepage that you might find useful: simply click the “Suggested/Additional Reading”
link.

13.3 Number Storage and Arithmetic on the Computer

In addition to Midterm Exams, homeworks, and notes, you may find the following exercises useful.
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Double Precision Arithmetic Exercises

When the following expressions are evaluated by the computer, to how many significant decimal digits will the numerical result
agree with the exact result? Your answer will consist of a single integer (∞ is an acceptable answer). If the integer is finite and nonzero,
your answer will be accepted if it is within 1 decimal digit of the exact answer.
We use computer scientific notation, such that, e.g., 5.63e22 ≡ 5.63 × 1022. For the purpose of this problem, apply IEEE 754 standard-
compliant double precision arithmetic, assuming all given integers represented in integer or floating point format between −253 and 253

(i.e., integers between ≈ −9× 1015 and ≈ 9× 1015 inclusive) are exact (for example, 2.01e2 is exact), as well as powers of 1
2

. Otherwise,
assume that in double precision the number is only known to 16 significant digits, and that machine epsilon is 4e-16.
Answers will receive full credit so long as they are correct within 1 decimal digit. You will not receive credit for showing work.

1. 7 + 2.4e-230/5e280

2. 7 + 2.4e230/5e280

3. 1/100

4. log10(2e-230) - 2e-200

5. (3.1415-3.14)/(3.1415-3.14)

6. 1/1024

7. 3.2e-200/5e-202 + 2

Solutions

1.7+2.4e-230/5e280:7isexactlyrepresentable,andtheexpression2.4e-230/5e280willyieldanunderflowindoubleprecision,
givingadoubleprecisionresultof7exactly.Theexactresultis7plusaperturbationatthe511thdigit.Thusthedoubleprecision
andexactresultsagreetoabout511significantdigits.

2.7+2.4e230/5e280:7isexactlyrepresentable,andtheexpression2.4e230/5e280willyieldanumberthatisoforder1e-51.Recall
thatmachineepsilonisdefinedasthelargestεsuchthat1+ε=1.Indoubleprecisionmachineepsilonisapproximately4e-16,so
7+1e-51~7(1+1e-52)is7exactly.Thusthedoubleprecisionandexactresultsagreetoabout51significantdigits.

3.1/100:Thedivisionisnotapowerof2,sotheansweris16significantdigitsofagreementbetweendoubleprecisionandtheexact
answer.

4.log10(2e-230)-2e-200:log10(2e-230)iscomputedviaTaylorseries,thuswillyieldadoubleprecisionresultthatmatchesthe
exactresultto16significantdigits.The-2e-200willnotaffecttheresult.Theansweris16.

5.(3.1415-3.14)/(3.1415-3.14):Thenumeratoranddenominatorwillevaluatetoexactlythesamebits,despitebeingconsistent
withtheexactresultto16significantdigits.Thustheanswerindoubleprecisionis1exactly,matchingtheexactresultto∞
significantdigits.

6.1/1024:1024=210,sotheexpressionis2−10,anexactlyrepresentablenumberindoubleprecisionthatmatchestheexactresultto
∞significantdigits.

7.3.2e-200/5e-202+2:3.2e-200/5e-202willbeevaluatedtoaprecisionof16significantdigitsandisoforder1e2.Thus2will
perturbitatthesecondsignificantdigit.Theresultisnotanumberexactlyrepresentableindoubleprecision,sowillbeconsistent
withtheexactsolutionto16significantdigits.

13.4 Determining the Scale of the Solution

Be able to combine estimates in “word problem” format to estimate the scale of a solution to a problem. Study
course notes, Midterm 1, and homeworks. Such problems on the Final Exam will not require that you base any
estimates on your own experiences. Rather, all numbers required to solve problems like these will be provided;
your task will be to synthesize any given numbers into a final answer.

13.5 Computational Cost and Computational Complexity; Big-O Notation

In addition to Midterm Exams, homeworks, and notes, you may find the following exercises useful.
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Exercises

Write the computational complexity of the following two algorithms using Big-O notation. You are to assume that N is large, as we are
only using this notation to estimate how much longer it will take for a given computer to evaluate the given algorithms as N increases. For
example, for problem 0 below, the correct answer is O(N2).

0. f=N*N

do i=1,N

do j=1,N

f = f + N*N

end do

end do

1. f=N*N

do i=1,N*N*N

f = f + i*i

end do

2. f=N*N*N

do i=1,N

do j=1,sqrt(N) # Assume sqrt(N) is an integer

f = f + i*i

end do

end do

3. f=N*N*N

do i=1,N

do j=i,i+1

do k=1,j

f = f + i*i + j + k

end do

end do

end do

4. f=N*N*N

do i=1,N

do j=-N,N

if(i+1 is equal to j)

f = f + i*i

end if

end do

end do

Solutions

1.O(N3)

2.O(N2),sincethejlooponlycoverstwoelementsatatime,andeachofthenestediandkloopsindividuallyhavecomplexityO(N).

3.O(N3/2)

4.O(N),asi+1=jatotalofO(N)times.

13.6 Basic Coding Knowledge

Be sure to study Midterm Exams, homeworks, and course notes. The following example problems may also be
helpful to your preparation.

Exercises

What is the output from the print statements in each of the following pseudocode snippets?

1. result=0

N=4

do i=1,N

do j=1,sqrt(N)

result = result + 1

print i,j,result

end do

end do

2. result=0

N=4

do i=1,N

result = result * 2

print i,result

end do

3. result=5

N=4

do i=1,N

result = result - 1

print i,result

end do
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Solutions

1.111

122

213

224

315

326

417

428

2.10

20

30

40

3.14

23

32

41

13.7 Numerical Linear Algebra: Solving Square Matrix Equations on the
Computer

Must be familiar with basic algorithms for solving Ax = b analyzed in class. Study Midterm 1, homeworks, as
well as your notes.

13.8 Function Approximation: Taylor Series

In addition to Midterm Exams, homeworks, and notes, you may find the following exercises useful.
If asked to compute a Taylor series, you will be given the formula for the Taylor series:

f(x) =
∞∑
n=0

f (n)(x0)(x− x0)n

n!
.

Taylor Series Exercise #1:

Expand the following function as Taylor series about x = x0, up to and including the second derivative term:

f(x) = esin x

Solution

ThedefinitionofTaylorseriesrequiresthatweevaluatederivativesoftheunderlyingfunction,andweareaskedtoevaluatetheTaylor
seriesuptoandincludingthesecondderivativeterm.Let’sfirstevaluatethesederivatives:

f(x)=e
sin(x)

f′(x)=e
sin(x)

cos(x)

f′′(x)=e
sin(x)

cos
2
(x)−e

sin(x)
sin(x)

ThustheTaylorseriesisgivenby

f(x)=e
sinx

=

∞∑
n=0

f(n)(x0)(x−x0)n

n!

=e
sin(x0)

+(x−x0)e
sin(x0)

cos(x0)−
1

2
(x−x0)

2(esin(x0)(sin(x0)−cos
2
(x0)))+O((x−x0)

3)
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Taylor Series Exercise #2:

Expand the following function as Taylor series about x = x0, up to and including the second derivative term:

f(x) = ln(ln(x3)), Assume that x0 > 1.

Solution

Firstweevaluatederivativesofthefunction:

f(x)=ln(ln(x
3
))

f′(x)=
3

xln(x3)

f′′(x)=−
9

x2ln
2

(x3)
−

3

x2ln(x3)

ThustheTaylorseriesuptoandincludingthesecond-derivativetermisgivenby

f(x)=ln(ln(x
3
))=

∞∑
n=0

f(n)(x0)(x−x0)n

n!

=ln(ln(x3
0))+

3(x−x0)

x0ln(x3
0)−

3(x−x0)2(ln(x3
0)+3)

2(x2
0ln

2(x3
0))+O((x−x0)

3)

Taylor Series Exercise #3:

Use the Ratio Test to determine the radius of convergence of the Taylor expansion of ln(x) about x0 = 1.

Solution

Westartbycomputingthederivativesofln(x)evaluatedatx0=1:

f
(0)

(1)=ln(1)=0

f
(1)

(1)=1/1

f
(2)

(1)=−1/1
2

f
(3)

(1)=2/1
3

f
(4)

(1)=−3!/1
4

f
(5)

(1)=4!/1
5

f
(6)

(1)=−5!/1
6

f
(7)

(1)=6!/1
7

.

..
.
..

f
(n)

(1)={0ifn=0

(−1)n−1(n−1)!ifn>0.

ThusthegeneralexpressionfortheTaylorseriesoff(x)=ln(x)aboutx0=1maybewritten:

f(x)=ln(x)=
∞∑
n=1

(x−1)n(−1)n−1(n−1)!

n!

=
∞∑
n=1

(x−1)n(−1)n(−1)−1

n

=−
∞∑
n=1

(1−x)n

n

TheRatioTestyields

lim
n→∞

∣∣∣∣bn+1

bn

∣∣∣∣=lim
n→∞

∣∣∣∣(1−x)n+1n

(1−x)n(n+1)

∣∣∣∣=|1−x|lim
n→∞

n

(n+1)
=|1−x|=|1−x|=L.

ThismeansthatL<1(absoluteconvergence)when−1<1−x<1.Thus−2<−x<0=⇒0<x<2,sotheradiusofconvergenceis1.
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13.9 Function Approximation: Fourier Series

In addition to example problems below, please study notes, midterms, & homeworks, as problems similar to those
you have encountered are fair game for the Final Exam. Additional/Supplementary Reading Material List on the
course website may also be useful.

Fourier Series Example #1

Consider the function g(x) = sin(x2).
In this problem, you will compute the coefficients of the Fourier series of g(x) in the interval x ∈ [−π/2, π/2). Recall the formula for the
Fourier series of a function f(x) defined in the interval x ∈ [−L,L) is given by

f(x) =
a0

2
+
∞∑
m=1

[
am cos

(mπx
L

)
+ bm sin

(mπx
L

)]
.

You are to evaluate all coefficients am and bm in the Fourier series, where

a0 =
1

L

∫ L

−L
f(x)dx

am =
1

L

∫ L

−L
f(x) cos

(mπx
L

)
dx

bm =
1

L

∫ L

−L
f(x) sin

(mπx
L

)
dx.

You may find the following integrals useful in computing the Fourier coefficients (as is common in many integral tables, the integration
constant is left out).

23/2 1
√
π

∫
sin(x2) cos(ax)dx = cos

(
a2

4

)(
S

(
2x− a
√

2π

)
+ S

(
2x+ a
√

2π

))
− sin

(
a2

4

)(
C

(
2x− a
√

2π

)
+ C

(
2x+ a
√

2π

))
23/2 1

√
π

∫
sin(x2) sin(ax)dx = cos

(
a2

4

)
C

(
2x− a
√

2π

)
− cos

(
a2

4

)
C

(
2x+ a
√

2π

)
sin

(
a2

4

)(
S

(
2x− a
√

2π

)
− S

(
2x+ a
√

2π

))
,

where

S(x) =

∫ x

0
sin(t2) dt, C(x) =

∫ x

0
cos(t2) dt,

are the Fresnel integrals, which are transcendental functions.
Write all nonzero Fourier coefficients in terms of the Fresnel integrals evaluated at the appropriate endpoints, using the above integral
expressions as needed.
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Solution

g(x)=sin(x2)isanevenfunction,soweimmediatelyknowthatallthebmcoefficientsmustbezero.Thusweonlyneedtocomputeall
amcoefficients.
Firstweevaluatea0.SinceL=π/2andg(x)iseven,wehave

a0=
2

π
2S(π/2)=

4

π
S(π/2).

Nextweevaluateam.SinceL=π/2,thedefinitiongivesus

am=
2

π

∫π/2

−π/2
sin(x

2
)cos(2mx)dx.

Theintegrandisanevenfunction,so

am=
4

π

∫π/2

0
sin(x

2
)cos(2mx)dx.

Comparingthisexpressionwiththeoneintheintegraltablegivesusa=2m.Thusweget

am=
4

π

∫π/2

0
sin(x

2
)cos(2mx)dx

=
4

π

√
π

23/2

[cos((2m)2

4

)(S(2x−(2m)
√

2π

)+S((2m)+2x
√

2π

))
−sin((2m)2

4

)(C(2x−(2m)
√

2π

)+C((2m)+2x
√

2π

))]π/2
0

.

Noticethat,withtheexceptionoftheconstantoutfrontsimplifyingto√2/π,theexpressiondoesnotsimplifyfurtherwhenx=0or
x=π/2,sothisisourfinalanswer.

Fourier Series Example #2

To greatly simplify integrals, particularly in the context of Fourier series, it is critically important to identify even and odd functions. In
your test booklet, label the following functions as even, odd, or neither. Recall that an even function f(x) satisfies f(−x) = f(x) and
an odd function f(x) satisfies f(−x) = −f(x). You will receive partial credit for identifying important pieces of the function as even, odd,
or neither.

1. f(x) = xesin
2(x)

2. f(x) = ex − e−x
3. f(x) = ex + e−x

4. f(x) = (ex)2 − (e−x)2

5. f(x) = sin(cos(ex))

Solutions

1.f(x)=xesin
2
(x)←odd

2.f(x)=ex−e−x=2sinh(x)←odd

3.f(x)=ex+e−x=2cosh(x)←even

4.f(x)=(ex)2−(e−x)2=e2x−e−2x=2sinh(2x)←odd

5.f(x)=sin(cos(ex))←neither

Fourier Series Example #3

To what value will the Fourier series of the following functions converge at the given points?

1. f(x) = x, Fourier series in interval x ∈ [−1, 5].

(a) f(−1) =?

(b) f(5) =?

(c) f(10) =?

2. f(x) = log10(x), Fourier series in interval x ∈ [0.1, 10.1]. Your answer may not include logarithms unless otherwise specified.

(a) f(0) =?

(b) f(−9.9) =? (Your answer may include logarithms.)

(c) f(10) =?

(d) f(10.1) =? (Your answer may include logarithms.)
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Solutions

1.f(x)=x,Fourierseriesinintervalx∈[−1,5].

(a)f(−1)=
(−1)+5

2=2

(b)Sincetheperiodis6(i.e.,theFourierseriesrepresentationofthefunctionrepeatsevery6),f(5)=f(−1)=2

(c)f(10)=f(4)=4.

2.f(x)=log10(x),Fourierseriesinintervalx∈[0.1,10.1].Youranswermaynotincludelogarithmsunlessotherwisespecified.

(a)Thefunctionhasaperiodof10(i.e.,theFourierseriesrepresentationofthefunctionrepeatsevery10)f(0)=f(10)=
log10(10)=1

(b)f(−9.9)=f(0.1)=
log10(0.1)+log10(10.1)

2=
−1+log10(10.1)

2.

(c)f(10)=log10(10)=1.

(d)f(10.1)=f(−9.9),computedabove.

13.10 Polynomial Interpolation and Extrapolation

Study course notes and homeworks.

13.11 Numerical Integration

Study course notes and homeworks.

13.12 Numerical Root Finding and Optimization

In addition to homeworks and course notes, you may find the following exercises useful.

Example Problem #1

After N iterations, you are distance d from a root, where d is 1,000 times machine epsilon. Using the bisection method, how many more
iterations will be necessary to guarantee that you will be within machine epsilon of the root? You may assume that the function is such
that this is possible, and any answer within 1 iteration of the correct answer will be accepted.

Solution

AfterNiterations,youareadistanceof1000εmfromtheroot.Sinceweareusingthebisectionmethod,atiterationN+1wewillbe
guaranteedtobeadistanceofatmost500εmfromtheroot.Thuswehave

1.1moreiteration:500εm
2.2moreiteration:250εm
3.3moreiteration:125εm
4.4moreiteration:≈63εm
5.5moreiteration:≈32εm
6.6moreiteration:≈16εm
7.7moreiteration:≈8εm
8.8moreiteration:≈4εm
9.9moreiteration:≈2εm

10.10moreiteration:≈1εm

Thustheansweris10,andanswersof9and11willalsobeaccepted.

Example Problem #2

Write three unique fixed-point iteration methods for finding a root of the following function f(x): f(x) = x3 − ex + x.
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Solution

Manyanswersarepossible,andherearesomeexamplesofcorrectanswers:

1.0=x+x3−ex=⇒xn+1=exp(xn)−x3
n

2.0=x(x2+1)−ex=⇒xn+1=exp(xn)/(x2
n+1)

3.0=x3(1+1/x2)−ex=⇒xn+1=(exp(xn)/(1+x−2
n))1/3

4.0=x3+x−ex=⇒xn+1=ln(x3
n+xn)

Example Problem #3

Given the initial guess x0 = π/2, what is the value x1 using the Newton-Raphson root finding method for f(x) = sin(x)?

Solution

TheNewton-Raphsonmethodfindsrootsofthesmoothfunctionf(x)viathefixed-pointiterationmethod:xn+1=xn−f(xn)/f′(xn).
Thuswehave

xn+1=xn−
sin(xn)

cos(xn)
=⇒x1=

π

2
−

sin(π/2)

cos(π/2)
=
π

2
−

1

0
.

ThustheanswerisNaN.Thisisnotsurprisingsincetheslopeoff(x)=sin(x)atx=π/2iszero,meaningthattheNewton-Raphson
methodwillchooseitsnextguessaninfinitedistanceaway.

Example Problem #4

Our derivation of the Golden Section Search algorithm depended sensitively on the fact that

√
5− 1

2
=

2

1 +
√

5

Prove this.

Solution

Thiswasshowninthenotes.Thebasicstrategyistomultiplynumeratoranddenominatorintherightexpressionby(1−
√

5)andthen
simplifytogettheexpressionontheleftoftheequalssign.

13.13 Ordinary Differential Equations

Be able to solve ODEs using explicit Runge-Kutta methods, and be able to (as discussed in the notes) verify that
these methods produce solutions that are convergent to the expected order. You will not need to solve any ODEs
by hand, unless they are separable.

In addition to homeworks and course notes, you may find the following exercise useful.

Example Problem

Demonstrate that Heun’s method will reproduce the exact solution to

y′(t) = tet,

y(0) = 0, to the expected order in ∆t after one iteration. The exact solution is given by y(t) = c + tet − et, where c is an integration
constant you must find by applying the initial condition. You must expand this exact solution to the appropriate order ∆t and demonstrate
its identity with the output from Heun’s method after one iteration. (Hint: What is the expected order of convergence for Heun’s method
after one iteration?)
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Solution

Theexactsolutionisy(t)=c+et(t−1).Whenweapplytheboundarycondition,wefindthatc=1.Thusy(t)=1+et(t−1).The
Taylorseriesofthisfunctionrequiresthatderivativesbeevaluated.Sincewe’recomparingwithHeun’smethod,wewillneedtoexpand
theTaylorseriesuptoandincludingthesecondderivativeterm:

y(t0=0)=0

y′(t
0=0)=[e

t
+e

t
(t−1)]t=0=[te

t
]t=0=0

y′′(t
0=0)=[te

t
]′
t=0=[e

t
+te

t
]′
t=0=1

ThustheTaylorseriesaboutt0=0isgivenby

y(t)=
t2

2
+O(∆t)

3

Heun’smethodyields

k1=∆tf(y0,t0)=∆t[te
t
]y=0,t=0=0

k2=∆tf(y0+k1,t0+∆t)=∆t[te
t
]y=0,t=∆t=(∆t)

2
e
∆t

y1=y(∆t)=y0+
1

2
(k1+k2)+O((∆t)3)

=0+
1

2
(∆t)

2
e
∆t

+O((∆t)3)
=

1

2
(∆t)

2
(1+∆t+...)+O((∆t)3)

=
(∆t)2

2
(∆t)

2
+O((∆t)3),

whichindeedmatchestheexactsolutiontosecondorderin∆t.
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13.14 Final Exam: Free Problem

Example Problem

Write three unique fixed-point-iteration-without-derivatives algorithms that may conceivably be used to find the real roots of

f(x) = x ln(x)− x3 − 1.

Each answer must be in the form
xi+1 = g(xi),

where g(x) is the unique function for your given fixed-point iteration algorithm.

Solution

Ourgoalistofindaniterativemethodtocomputef(x)=0.Thiswillbethecasewhen

xln(x)−x
3
−1=0,

sooneiterativemethodwouldbesolvingforxasfollows:

xln(x)−x
3
−1=0

=⇒x=
1+x3

ln(x)

=⇒xi+1=
1+x3

i

ln(xi)

Anotherwouldinvolvesolvingforln(x)andthenexponentiatingbothsides:

xln(x)−x
3
−1=0

=⇒ln(x)=
1+x3

x

=⇒xi+1=exp(1+x3
i

xi

)

Andanotherwouldinvolvefactoringoutanxfromxln(x)−x3andsolvingforthatx:

xln(x)−x
3
−1=0

=⇒x(ln(x)−x
2
)=1

=⇒x=
1

ln(x)−x2

=⇒xi+1=
1

ln(xi)−x2
i
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MATH 521, Fall 2018 Notes

Prof. Zachariah B. Etienne

Chapter 14: The Fast Fourier Transform (FFT)

14.1 Fast Fourier Transform (FFT): Motivation

Suppose we wish to compute the Fourier series coefficients of some even function f(x) in the interval x ∈ [−L,L):

an = 2

∫ L

0
f(x) cos(nπx/L)dx

Notice that at each point x in the interval, we multiply f(x) by some oscillatory function cos(nπx/L). This
function has some natural wavelength λn that will depend on n, such that

cos(nπ(x+ λn)/L) = cos(nπx/L)

But we also know that over one wavelength the cosine argument varies by a total of 2π:

cos(nπx/L) = cos(nπx/L+ 2π).

So the wavelength of coefficient n in the Fourier series is given by:

nπx/L+ 2π = nπ(x+ λn)/L

nx/L+ 2 = n(x+ λn)/L

2 = nλn/L

=⇒ λn = 2L/n

Thus the wavelength of oscillation in the nth term of a Fourier series decreases as 1/n.
Knowing this, let’s think for a minute how this integral will evaluate with different functions f(x) and different

n’s. If f(x) is nearly constant, then an will evaluate to a very small number for n > 0 because in the limit f(x) = c

(a constant), an = c
∫ L

0 cos(nπx/L)dx = 0. Now let’s imagine what would happen if f(x) is smooth & oscillates
gently two times on the interval, and we choose a very large value of n, say n = 100 with a correspondingly small
wavelength. Then if we split the integral to be a sum of integrals over each wavelength, each integral will evaluate
to a number very close to zero again, because over each oscillation period, the function is nearly constant. This
is the essence of convergence of a Fourier series; oscillatory terms that vary on the same scales as f(x) varies will
contribute the most to the Fourier sum.

So if we wish to evaluate the Fourier series of some function f(x) that varies on the scale of ∆xf (e.g., “curvature

scale” of f , given by
√

f(x)
f ′′(x)), we must be sure to compute the Fourier coefficients at least up to n such that

λn ≤ ∆xf .

This implies that n ≥ 2L/∆xf to start seeing convergence of a Fourier series.
Recall that to minimally sample an oscillatory function with wavelength λ requires that we choose ∆x ≤

∆xNyq = λ/2. So for cos(nπx/L),

λn = 2L/n =⇒ ∆x ≤ ∆xNyq = λn/2 = L/n.

So suppose L = 1 and the function varies on the order of ∆xf = 0.1. Further, suppose we choose n = 100,
which easily satisfies our inequality λn ≤ ∆xf . Then to resolve a wavelength of the n = 100 term of cos(nπx/L)
will require uniform sampling of the function f(x) at spacing

∆x ≤ ∆xNyq = L/n = 1/100
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So over the interval from 0 to L, we will need to sample the (even) function f(x) and cos(nπx/L) to at least 100
points to compute the n = 100 term. If the function were neither even nor odd, this number would increase to 200
points (since we would double the sampling interval to from x ∈ [−L,+L)).

Extending the discussion, we see that to compute the nth Fourier coefficient, we will need to sample f(x) and
the oscillatory Fourier sine and cosine functions to at least 2n points before we will start to see convergence in the
integral.

Thus the computation of all Fourier coefficients up to and including the nth coefficient will be an O(n2)
operation.

This is quite an expensive algorithm; if we were to double the number of points where the function is evaluated,
we would need four times as many floating point operations. Does a better algorithm exist?

The answer is yes: the Fast Fourier Transform, or simply, the “FFT”.

14.2 Fast Fourier Transform (FFT): Discrete Fourier Transform

To understand better how the FFT works, we first need to review some basics about complex numbers. Recall the
Euler identity:

eiθ = cos(θ) + i sin(θ)

Recall also the definition of Fourier series:

f(x) =
a0

2
+
∞∑
m=1

[
am cos

(mπx
L

)
+ bm sin

(mπx
L

)]
(14.1)

Let’s now define

Am =

√
am2 + bm

2

φm = arctan(
bm
am

)

cn =


An
2i e

iφn = 1
2(an − ibn) for n > 0

1
2a0 for n = 0

c∗|n| for n < 0.

Then we can show

f(x) =

∞∑
n=−∞

cne
inπx
L

is equivalent to the definition of Fourier series (Eq. 14.1).
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Proof:

f(x) =

∞∑
n=−∞

cne
inπx
L

=
a0

2
+
∑
n>0

cne
inπx
L +

∑
n<0

c∗|n|e
inπx
L

=
a0

2
+
∑
n>0

cne
inπx
L +

∑
n>0

c∗ne
−inπx

L

=
a0

2
+
∑
n>0

(cne
inπx
L + c∗ne

−inπx
L )

=
a0

2
+
∑
n>0

(
1

2
(an − ibn)ei

nπx
L +

1

2
(an + ibn)e−i

nπx
L

)

=
a0

2
+
∑
n>0

(
an
ei
nπx
L + e−i

nπx
L

2
+ ibn

−ei
nπx
L + e−i

nπx
L

2

)

=
a0

2
+
∑
n>0

(
an
ei
nπx
L + e−i

nπx
L

2
+ bn

ei
nπx
L − e−i

nπx
L

2i

)
=

a0

2
+
∑
n>0

[
an cos

(nπx
L

)
+ bn sin

(nπx
L

)]
.

We know how to compute the an and bn’s, but how do we compute this new quantity cn? Recall that we found
that only n/2 an and bn’s minimally resolve the oscillatory term. So what does this mean for the sum? Suppose
we have the function at all points xi, i ∈ [0, N). Let’s now do the reverse Fourier transform, to compute cn:

f(x) =

∞∑
n=−∞

cne
inπx
L

f(x)e−i
mπx
L =

∞∑
n=−∞

cne
i
(n−m)πx

L

∫ L

−L
f(x)e−i

mπx
L dx =

∞∑
n=−∞

cn

∫ L

−L
ei

(n−m)πx
L dx

=
∞∑

n=−∞
cn

∫ L

−L
(cos(

(n−m)πx

L
) + i sin(

(n−m)πx

L
))dx

= 2

∞∑
n=−∞

cn[sin(
(n−m)πx

L
)]L0

= 2
∞∑

n=−∞
cn[sin((n−m)π)] = 0, unless n = m.

if n = m, we have:

∫ L

−L
f(x)e−i

mπx
L dx =

∞∑
n=−∞

cnδn,m

∫ L

−L
dx

= 2Lcm.

=⇒ 1

2L

∞∑
n=−∞

cnδn,m

∫ L

−L
dx = cm

To compute the Fourier coefficient integrals, let’s use the Trapezoidal rule. To do this, first note that the Fourier
series representation of f(x) is periodic and in the continuum limit, the integral is over the interval x ∈ [−L,L].
Since f(x0) = f(xN ), f(x0)/2 + f(xN )/2 = f(x0). Thus

2L

2L

N−1∑
n=0

f(xn)e−i
mπxn
L = cm.
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Sources: https: // en. wikipedia. org/ wiki/ Discrete-time_ Fourier_ transform , http: // home. engineering.
iastate. edu/ ~ julied/ classes/ ee524/ LectureNotes/ l5. pdf

Similarly, the discrete, finite Fourier series of f(x) evaluated at N points, for x ∈ [−L,L) can be written

f(xn) =
N−1∑
m=0

cme
imπxn

L ,

Thus we have found

f(xn) =
N−1∑
m=0

cme
imπxn

L

cm =
N−1∑
n=0

f(xn)e−i
mπxn
L

14.2.1 Fast Fourier Transform (FFT): Cooley-Tukey Algorithm

We start from the discrete Fourier Transform for a function that is sampled at N = 2M points, where M > 0 is an
integer.

f(xn) =
N−1∑
m=0

cme
imπxn

L .

Notice that xn = −L+ n∆x, where ∆x = 2L/N . Then xn = −L+ 2Ln/N xn/L = (−1 + 2n/N). Thus,
Source: https://en.wikipedia.org/wiki/Cooley%E2%80%93Tukey\_FFT\_algorithm, with slight modifica-

tions

f(xn) =
N−1∑
m=0

cme
imπxn

L

=
N−1∑
m=0

cme
imπ(2n/N−1)

=
N−1∑
m=0

dme
im2πn/N ,

where we have absorbed the e−imπ term into cm, to define dm. Let’s now rewrite this as a sum of even and odd
terms:

f(xn) =
N−1∑
m=0

dme
im2πn/N

=

N/2−1∑
m=0

d2me
− 2πi

N
(2m)n +

N/2−1∑
m=0

d2m+1e
− 2πi

N
(2m+1)n

=

N/2−1∑
m=0

d2me
− 2πi
N/2

mn

︸ ︷︷ ︸
DFT of even−indexed part of dm

+ e−
2πi
N
n

N/2−1∑
m=0

d2m+1e
− 2πi
N/2

mn

︸ ︷︷ ︸
DFT of odd−indexed part of dm

= En + e−
2πi
N
nOn.

Thanks to the periodicity of the DFT, we know that

En+N
2

= En

On+N
2

= On

Proof:

123

https://en.wikipedia.org/wiki/Discrete-time_Fourier_transform
http://home.engineering.iastate.edu/~julied/classes/ee524/LectureNotes/l5.pdf
http://home.engineering.iastate.edu/~julied/classes/ee524/LectureNotes/l5.pdf


En+N
2

=

N/2−1∑
m=0

d2me
− 2πi
N/2

m(n+N
2

)

=

N/2−1∑
m=0

d2me
− 2πi
N/2

mn
e
− 2πi
N/2

mN
2

=

N/2−1∑
m=0

d2me
− 2πi
N/2

mn
e−2πim

=

N/2−1∑
m=0

d2me
− 2πi
N/2

mn
(cos(−2πm) + i sin(−2πm))

=

N/2−1∑
m=0

d2me
− 2πi
N/2

mn
(1 + i× 0)

=

N/2−1∑
m=0

d2me
− 2πi
N/2

mn

= En.

For On+N
2

= On, the proof follows precisely the same reasoning.

Therefore, we can rewrite the above equation as

f(xn) =


En + e−

2πi
N
nOn for 0 ≤ n < N/2

En−N/2 + e−
2πi
N
nOn−N/2 for N/2 ≤ n < N.

We also know that the “twiddle factor” e−2πin/N obeys the following relation:

e
−2πi
N

(n+N/2) = e
−2πin
N
−πi

= e−πie
−2πin
N

= −e
−2πin
N

Thus, for 0 ≤ n < N
2 , we can write

f(xn) = En + e−
2πi
N
nOn

f(xn+N
2

) = En − e−
2πi
N
nOn

So where is the speed-up coming from? Clearly, the cost to compute the sums En and On is O(N ), but if we exploit
this simple relationship given in Eq. (14.2.1), we can compute f(xn) by just analyzing 0 ≤ n < N

2 terms. So if we
were to apply Eq. (14.2.1) once, our Fourier Transform would require O(N ∗N/∈) operations. The key to the
FFT is that we can continue to apply Eq. (14.2.1) log2N = M times for N = 2M , hence reducing the
overall computational complexity to O(N logN ) operations.

Note that one can also perform FFT in N log(N) without the requirement that N = 2M , M > 0 an integer,
but this is outside the scope of our class.
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